[1] Y. Sun, Y. Li, H. Li, J. Liu and X. Zhou, Intuitionistic Fuzzy MADM in Wargame Leveraging with Deep Reinforcement Learning, in IEEE Transactions on Fuzzy Systems, doi: 10.1109/TFUZZ.2024.3435400.
[2] Y. Sun, Y. Sun, J. Yu, Y. Li and X. Zhou, Predicting Wargame Outcomes and Evaluating Player Performance from an Integrated Strategic and Operational Perspective, in IEEE Transactions on Games, doi: 10.1109/TG.2024.3369330
[3] Y. Sun et al., Intelligent Decision-Making and Human Language Communication Based on Deep Reinforcement Learning in a Wargame Environment, in IEEE Transactions on Human-Machine Systems, vol. 53, no. 1, pp. 201-214, Feb. 2023, doi: 10.1109/THMS.2022.3225867
[4] Y. Xue, Y. Sun*, J. Zhou, L. Peng and X. Zhou, Multiattribute Decision-Making in Wargames Leveraging the Entropy–Weight Method in Conjunction With Deep Reinforcement Learning, in IEEE Transactions on Games, vol. 16, no. 1, pp. 151-161, March 2024, doi: 10.1109/TG.2023.3236065
[5] Zhao, J., Lin, J., Y. Sun*. et al. From mimic to counteract: a two-stage reinforcement learning algorithm for Google research football. Neural Comput & Applic 36, 7203–7219 (2024). https://doi.org/10.1007/s00521-024-09455-x
[6] Peng L, Zhou X, Zhao J, Y Sun, H Li. Three-way Multi-attribute Decision Making Under Incomplete Mixed Environments Using Probabilistic Similarity. Information Sciences, 2022, 614: 432-463.
[7] Sun, Y.; Yuan, B.; Zhang, T.; Tang, B.; Zheng, W.; Zhou, X. Research and Implementation of Intelligent Decision Based on a Priori Knowledge and DQN Algorithms in Wargame Environment. Electronics 2020, 9, 1668. https://doi.org/10.3390/electronics9101668
[8] 孙宇祥,赵俊杰,解宇轩,等.自生成兵棋AI:基于大语言模型的双层Agent任务规划[J/OL].控制与决策,1-9[2024-08-13].https://doi.org/10.13195/j.kzyjc.2023.1497.
[9] 彭莉莎,孙宇祥*,薛宇凡,等.融合三支多属性决策与SAC的兵棋推演智能决策技术[J].系统工程与电子技术,2024,46(07):2310-2322.
[10] 孙宇祥,李原百,周胜,等.对抗环境下的智能兵棋系统设计及其关键技术[J].火力与指挥控制,2024,49(02):33-41.
[11] 孙宇祥,彭益辉,李斌,周佳炜,张鑫磊,周献中.智能博弈综述:游戏AI对作战推演的启示[J].智能科学与技术学报,2022,4(02):157-173.
[12] 孙宇祥,周献中,唐博建,徐爽,朱紫.智能指挥与控制系统发展路径与未来展望[J].火力与指挥制,2020,45(11):60-66.
[13] 孙宇祥,周献中,戴迪.基于属性约简与BP神经网络的舰艇目标威胁评估方法[J].指挥与控制学报,2021,7(04):397-402.
[14] 孙宇祥,周献中,徐爽,唐博建.智能指挥与控制系统人机混合模型研究[J].火力与指挥控制,2020,45(12):80-86.
[15] 孙宇祥,黄孝鹏,周献中,唐博建.基于知识的海战场态势评估辅助决策系统构建[J].指挥信息系统与技术,2020,11(04):15-20.