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Production and Inventory Rationing in a Make-to-Stock
System With a Failure-Prone Machine and Lost Sales

T. C. E. Cheng, Chunyan Gao, and Houcai Shen

Abstract—We consider production and inventory rationing of a product
to fulfill multiple demand classes in a make-to-stock production system with
a failure-prone machine. Demand that cannot be satisfied immediately is
lost and incurs a lost sales cost, which differs from class to class. We find
that the optimal control policies under both the expected total discounted
cost criterion and the average cost criterion have similar structural proper-
ties. Specifically, the optimal production policy is the base-stock policy and
the optimal inventory allocation policy is the threshold control policy with
machine-state-dependent threshold levels. Finally, we provide numerical
examples to show the importance of taking machine failures into consider-
ation and the effectiveness of the optimal control policy.

Index Terms—Machine failures, multiclass demands, optimal control.

I. INTRODUCTION

One of the challenges in managing production systems is to cope with
machine unreliability. Production facilities are subject to unpredictable
breakdowns due to age and usage. Machine failures render production
processes uncertain and curtail production capacity. Considering that
demands requiring the same product may have different values to dif-
ferent firms, require different service levels, or incur different penalties
for delays, many firms adopt a demand differentiation strategy that seg-
ments demands into different classes and provides different services to
different classes. Demand differentiation requires proper inventory al-
location decisions to carry out. Under the situation where the on-hand
inventory is capacitated and not enough to satisfy all the different de-
mands, an inventory allocation decision needs to be made as to whether
to satisfy the current requirement for the product from a certain demand
class or reserve the inventory for the more important demands that will
arrive in the future. The issue of inventory rationing in production sys-
tems with failure-prone machines exists in the real world. For example,
many high-tech electronic manufacturing firms produce core compo-
nents for different customers, e.g., Qualcomm, Intel, and AMD. But the
lost sales costs associated with different customers vary significantly
according to contractual agreements, which prompt manufacturers to
implement appropriate inventory allocation policies to adjust product
allocations among multiple demand classes.

Thereexistsa largebodyof literatureon theoptimalcontrolofproduc-
tion systems with failure-prone machines. [1], [2], [13], [17], and [18]
consider the optimal control of production rates in manufacturing sys-
tems with deterministic demand, while [4] and [5] consider the case with
stochastic demand. Another stream of literature studies combined pre-
ventive maintenance and production control. [12] extensively reviews
the related literature on this topic and shows that the optimal control
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policy is dynamic and rather complicated. However, the existence of
structural properties of the optimal control policy remains an open ques-
tion. Almost all of the above literature is about the single demand class,
which is technically equivalent to the situation where the lost sales cost
of each demand class is equal in our model. Such demand classes can
be aggregated as a single demand. Our study differs from such works
in that we consider multiple demand classes where the lost sales cost
varies from class to class. The optimal control policy characterizes the
production decision, as well as the inventory allocation decision.

Inventory allocation has been widely studied in the literature. We
mainly review the related literature on optimal control in queueing-like
systems. The optimal rationing policy in a make-to-stock (MTS) system
with exponential processing times and lost sales was studied in [8]. The
author proves that the optimal production policy is the base-stock policy
and the optimal allocation policy is the threshold control policy. [6] con-
siders a similar model, but the authors assume that the advance demand
information is imperfect. They show that the optimal control policy is
state-dependent. Subsequently, [10] extends [8] and considers a system
with Erlang distributed processing times. The optimal rationing policy
is the so-called critical work storage level policy. Recently, [11] con-
siders the batch ordering case. The authors prove that the optimal con-
trol policy has the threshold-type property. Different from the above lost
sales models, some studies focus on the backorder model. [9] considers
optimal control in a system with two demand classes and backlogs. The
author derives that the optimal production policy is also the base-stock
policy, but the optimal rationing policy has a monotone switching curve
structure. [3] extends [9] to the multiple demand classes case. As an ex-
tension of [7], [10] studies an Erlang processing time model with back-
orders. The common solution approach is to formulate the system as a
Markov decision process and establish monotonicity of the optimal con-
trol policy by the supermodularity of the objective function, see [14],
[19], and ����. These papers assume exponential or Erlang processing
times, but our technical note considers a special case of general dis-
tributed processing times and explicitly considers the influence of ma-
chine failures on the optimal control policy.

The rest of the technical note is organized as follows: We introduce
the basic model and characterize the optimal control policy under the
expected total discounted cost criterion in Section II. We consider the
average cost criterion in Section III. In Section IV, we provide some nu-
merical examples to highlight the importance of taking machine fail-
ures into consideration. Finally, we conclude the technical note and
suggest some future research topics in Section V.

II. THE EXPECTED TOTAL DISCOUNTED COST CRITERION

Consider a production system with a single machine producing one
type of product to stock. Inventory is used to satisfy demands from
� different classes. Demand from class �, � � �� �� � � � � �, arrives
according to an independent Poisson process with a rate �� and re-
quires one unit of the product. Let � be the total demand rate, i.e.,
� � �

���
��. Demand that cannot be satisfied immediately from

stock is lost and incurs a lost sales cost �� if it is from class �. Without
loss of generality, we assume �� � �� � � � � � ��. Inventory is re-
plenished by a failure-prone machine. The processing times are expo-
nentially distributed with a rate �. We assume that machine failures
are time-dependent only, which implies that they are independent of
whether or not the machine is operational, as studied by [4], [5]. The
time duration between two successive breakdowns also follows an ex-
ponential distribution with a rate �. Once a machine failure happens,
the machine is sent to repair immediately. We assume that the repair
times are exponentially distributed with a rate 	. The production in-
terrupted by machine breakdowns is resumed once the machine is re-
paired. Due to the memoryless property of the exponential distribution,
the remaining processing time is stochastically equivalent to initiating

0018-9286/$26.00 © 2011 IEEE
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production from scratch. We make the exponential assumptions to en-
sure that the model is tractable.

A control policy includes the production decision and inventory allo-
cation decision. An allocation decision must be made as to whether to
satisfy the current requirement from a certain demand class or reserve
the inventory for more important demands that will arrive in the future.
The other decision is whether or not to produce when the machine is
up. We investigate the optimal control policies under two different de-
cision criteria: the expected total discounted cost and the average cost.

We use ����������� to denote the state of the system, where
���� � �� denotes the on-hand inventory at time � and���� denotes
the machine state at time �. ���� � � denotes that the machine is
in state �. When the machine is operational, ���� � �; otherwise
���� � �. The system has the state space �, � � ��� � ��� ��.
Let ����� �� � ������� � ������ � �� be the expected total
discounted cost over an infinite horizon under policy 	 with a starting
state ��� ��, i.e.,

�
���� �� � 


��

�

�
���

�������
��

�

���

��
�
�
� ��� (1)

where � is the discount rate, ������� denotes the holding cost function
when the on-hand inventory is����, which is convex, nonnegative, and
���� � �, and ��

� ��� is the number of class � demands that have not
been satisfied from the on-hand inventory up to time � under policy 	.

Policy 	� is said to be optimal if it minimizes the expected total
discounted cost, i.e.,

�
� ��� �� � �	


�
�
���� ��� (2)

To simplify notation, we drop the superscript �� from �� ��� �� in
the rest of the technical note. Following Lippman [15], we re-scale the
time unit so that ��������� � �. Then the optimal cost function
����� �� must satisfy the following optimality equations:

�
���� �� � ��

���� �� (3)

where � is an operator on the set of real-valued function ���� �� de-
fined on the state space �

����� �� � ���� �

�

���

�� �	
����� �� � ��������� ���

���	
����� ��� ���� �� ��� � ����� �� � ����� �� (4)

where ��, � � �� 
� � � � � �, is an operator defined as follows:

������ �� �
���� �� � ��� � � ��

���� �� ��� otherwise.

In (4), the first minimization operation is associated with the deci-
sion of whether or not to fill a newly arrived demand from class � and
the second minimization operation is associated with the decision of
whether or not to produce when the machine is up. Obviously, it is op-
timal to satisfy class � demand when ����� �� � �� � ���� � �� ��
and the on-hand inventory is positive; otherwise reject it. It is optimal
to produce when ����� �� � ���� � �� ��.

In order to characterize the structural properties of the optimal con-
trol policy, we introduce a set of functions with certain properties and
prove that operator � preserves these properties.

Definition 1: � is a set of functions defined on �. If ���� �� � � ,
then ���� �� satisfies the following properties:

�� � ���� 
� ��� ���� �� �� � ���� �� ��� ���� ��

�
 � ���� �� ��� ���� �� � ���� �� ��� ���� ��

�� � ���� �� ��� ���� �� � ����

Lemma 1: If ���� �� � � , then ����� �� � � .
Proof: For any ���� �� � � , we prove that ����� �� satisfies

properties C1-C3. To facilitate analysis, let����� �� � �	
����� ���
��������� ���, where � � �, 1, and ���� � �	
����� ��� ������ ���.
Define a difference operator � such that ����� �� � ��� � �� �� �
���� ��,������ �� � ������� �������� ��, and����� � ����
�� � ����.

Proof of Property C1: First, we prove that ����� �� satisfies C1,
i.e., ������ �� �� � ������ ��. We have two cases.

1) Case 1: � � �. Consider����� ���� � ����� �� � �����
�� ��, which leads to the following three subcases.

1) Suppose ��� � ���� � �� �� � ���� � �� ��, then we have
�������� �� � ������ ������� ��� ���� ��������� �� �
������ ��.

2) Suppose ���� � �� �� � ��� � ���� � �� ��, then we have
�������� �� � ������ ��� ������� �� � ��� � ���� ���
����� �� � ���� � ������ ��.

3) Suppose ���� � �� �� � ���� � �� �� � ��� , then we have
������ �� �� � ����� 
� �� � ���� ����� �� ��� � �����
�� �� � ��� � ����� �� � ��� � ������ ��.

2) Case 2: � � �. We only have to prove that ������ �� �
������ ��. We distinguish the following two subcases.

1) Suppose ��� � ����� ��, then ������ �� � ���� �� �
����� �� � ��� � ���� ��� ����� �� � ��� � ������ ��.

2) Suppose ����� �� � ��� , then ������ �� � ���
� �� � ��� �
����� �� � ��� � ����� �� � ���� ����� �� � ��� � ������ ��.

Since ���� is equal to ����� with �� � �, ���� also satisfies C1.
Furthermore, the other terms in ����� �� are convex functions, which
means that ����� �� is convex in � for any �, � � �, 1.

Proof of Property C2: First, we prove that ����� �� satisfies C2,
i.e., ������ �� � ������ ��. If � � �, consider four cases.

1) Suppose ��� � ���� � �� �� � ����� ��, then ������ �� �
���� ��� ���� �� �� � ���� ��� ���� �� �� � ������ ��.

2) Suppose ���� � �� �� � ��� � ����� ��, then ������ �� �
���� ��� ����� ������ � ���� ��� ����� ������ � ������ ��.

3) Suppose ���� � �� �� � ����� �� � ���, then ������ �� �
������� ������������ ������� ������� ������������ ���
��� � ������ ��.

Similarly, we can show that C2 holds when � � �. So ����� ��
satisfies C2. Next we show that����� � ������ ������� ��. When
� � �, there are two cases.

1) Suppose ������� �� � �, then ����� � ����
� �������
�� �� � ���� �� ��� ���� �� � ���� �� ��� ���� ��.

2) Suppose ���� � �� �� � �, then ����� � ��� � �� �� �
���� �� � ���� �� ��� ���� ��. So � preservers property C2.
Proof of Property C3: First, we prove that ����� �� satisfies C3,

i.e.,������ �� � ��� . If � � �, we have the following two subcases.
1) Suppose��� � ����� ��, then we have������ �� � ���� ���

��� � �� �� � ���.
2) Suppose ����� �� � ��� , then we have ������ �� � ���� �

�� �� � ��� � ���� � �� �� � ��� � ���.
In a similar manner, we find that ����� �� satisfies C3 when � � �.

���� is a special case of����� �� with �� � �, which implies that ����
satisfies C3. Then we have ���� � �� �� � ����� �� � ��� � �� �
���� � ���

���
�������� �� � ������ � ������ �� ������� �� �

���
���

���
�� � �� �� � � ���.

Following a similar process, we obtain that ���� � �� �� �
����� �� � ���. So � preserves property C3. Lemma 1 is proved.

Proposition 1: The optimal cost function ����� �� � � . The op-
timal control policy is a base-stock/threshold policy. Furthermore

 � � � � !���� � !���� � 	 	 	 � !����

 
 �!���� � !����� ��� � � �� 
� � � � � �
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Fig. 1. Structure of the optimal policy.

Fig. 2. Optimal policy versus �.

where �����, � � �� �� � � � � �, � � �, 1, is the threshold level for
demand � when the machine is in state �.

Proof: Lemma 1 shows that operator � preserves properties C1,
C2, and C3, which implies that ����� 	� � � . It is optimal to produce
in state ��� �� if ���� � �� �� � ����� �� � � and to satisfy demand
from class � in state ��� �� if ����� �� � ���� � �� �� � �
�. Since
���� � �� �� � ����� �� is increasing in � due to convexity, a base-
stock/threshold policy is optimal.

As for properties P1, ������� � ����� is due to convexity; C3
implies ����� � �. We have�
� � ���������� ������������� �
���������� ������������� due to supermodularity, which implies
����� � �����. Proposition 1 is proved.

The optimal base-stock level satisfies � � 	
������ � ���� �
�� �� � ����� �� � ��, while the optimal threshold level is uniquely
defined and satisfies ����� � 	
������ � ������� �������� �� �
�
��. We also have ����� � � due to the definition of �, i.e., �����
�� �� � ����� �� � �. The optimal policy works in the following
manner: Produce only when ��
� � � and the machine is up; satisfy
demand from class � only when ��
� � �����, otherwise do not fulfill
it. The inventory allocation decision is machine-state-dependent. The
threshold level associated with a certain demand class when the ma-
chine is down is larger than that when the machine is up. This is very
intuitive because production is interrupted by machine breakdowns and
we should reserve more inventory to fulfill demands with higher lost
sales costs. Therefore if it is optimal to satisfy demand from class �

Fig. 3. Optimal policy versus �.

when the machine is up, but once a machine failure happens, contin-
uing to satisfy that demand from the on-hand inventory may not be op-
timal. But if it is optimal to satisfy demand from a certain class when
the machine is down, it remains optimal to satisfy that demand when
the machine is up. Proposition 1 also states that we should never re-
ject demand from class 1. The structure of the optimal control policy is
shown in Fig. 1, in which we specify the optimal actions in each region.

III. AVERAGE COST CRITERION

In this section we investigate the structural properties of the optimal
control policy under the average cost criterion. Let �� ��� �� denote
the optimal average cost function with starting state ��� �� and �� be
the optimal control policy, i.e.

�
� ��� �� � 	
�

�



	
����

�

�
�

�

�

����
���
�

�

���


���
�

� �
� �

(5)

Consider a stationary policy �. Under such a policy, the system oper-
ates in the following manner: Production is controlled by the base-stock
policy when the machine is up. Inventory is allocated to demands in
the FCFS order regardless of their classes as long as the on-hand in-
ventory is positive. The induced Markov chain is positive irreducible
and the model is unichain, so there exists a finite constant average
cost �� . On the other hand, ���� is a convex function of � and pos-
itive, so the number of � that satisfies ���� � � is positive and finite.
Therefore, there exist an optimal constant average cost �� indepen-
dent of the initial state and a bias ���� �� that satisfies the following
equation:

���� �� ��
�
���� �� �

�

�
������ ��� �

�� (6)

where � � �������; see [16]. The bias ���� �� denotes the expected
total difference between the optimal constant average cost and the sta-
tionary cost. Then the optimal control policy is determined through the
function ���� ��. The following lemma establishes the properties of the
optimal policy.

Lemma 2: If � � � , then � ����� �� � � .
Proof: A linear transformation of � and � � preserves properties

C1–C3, confirming that the optimal control policy with respect to the
average cost criterion possesses the same properties.
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TABLE I
OPTIMAL CONTROL POLICY VS. THE OPTIMAL POLICY FOR THE FAILURE-FREE SYSTEM UNDER AVERAGE COST CRITERION

From Lemma 2, we see that the optimal control policy under the
average cost criterion retains the same structural properties as those
under the expected total discounted cost criterion.

IV. NUMERICAL EXAMPLES

In this section, we present some numerical examples to show how
the optimal control policy responds to changes in system parameters
and investigate the effectiveness of the optimal control policy by com-
paring it with the policy that is optimal for the failure-free system. The
comparisons also highlight the importance of taking machine failures
into consideration.

Figs. 2 and 3 indicate that the base-stock level and threshold levels
have the relationships as stated in Proposition 1. Specifically, the base-
stock level and threshold levels increase with the failure rate (Fig. 2),
and decrease with the repair rate (Fig. 3). This is intuitive because the
system, to cope with machine breakdowns, should hold more inventory
to satisfy the demands from higher classes. In addition, as the repair rate
increases, the influence of machine breakdowns on the system becomes
less, so further increases in the base-stock level and threshold levels are
not necessary.

In order to show the importance of taking machine failures into ac-
count and the benefit of adopting the optimal three-parameter threshold

policy, we compare the following two policies: one is the optimal con-
trol policy and the other is the system operating under the policy that
is optimal for the modified system without failures. We assume that
the processing times of the modified system follow an exponential dis-
tribution with a rate ����� � ��, which is equal to the expected total
processing time of the original system, i.e., the sum of the actual pro-
cessing time and total repair time of the original system. The optimal
cost function and the optimal control policy under both criterions can
be computed by the value iteration algorithm. The reader is referred to
[16] for details on the value iteration algorithm. In our experiments, we
adopted the average cost criterion to evaluate the two systems. In order
to apply the value iteration algorithm, we truncated the infinite count-
able state space to ��� ���, where �� is sufficiently large, to ensure that the
optimal cost function is not sensitive to the truncated state space. We
measure the effectiveness of the optimal control policy by the subopti-
mality �� � ����� � ���	, where �� denotes the average cost under
the modified system. The suboptimality also measures the significance
of machine failures.

Table I presents the computational results. In order to examine the
benefit of adopting the more complicated optimal three-parameter con-
trol policy over the two-parameter threshold policy, we chose the pa-
rameters as follows: 1) machine availability ���� � �� ranged from
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0.67 to 0.95; (2) the system load ��� � ����� � ����� ranged from
0.75 to 1.38. From Table I, we see that the suboptimality ranges from
������� � �	�	
��, which indicates that machine failures signifi-
cantly affect system performance. We summarize the main observa-
tions as follows.

• The optimal control policy performs better, especially when the
differences between the lost sales costs are large, which implies
the importance of taking machine failures into consideration.

• ����� and 	 all increase with �, 
�, and ��, and decrease with
�. We also see that ����� decreases with 
�, while 	 increases
with 
�

V. CONCLUSION

The authors extend [8] to the case with a failure-prone machine
and characterize the structural properties of the optimal control policy
under two different decision criteria. We find that the optimal control
retains the threshold-type property, but is different in that the optimal
threshold levels decrease with machine states. We highlight the impor-
tance of taking machine failures into account and make some inter-
esting observations from the numerical examples.
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Denominator Assignment, Invariants and Canonical
Forms Under Dynamic Feedback Compensation

in Linear Multivariable Systems

A. I. G. Vardulakis, Senior Member, IEEE, and C. Kazantzidou

Abstract—A result orinally reported by Hammer [6] for linear time
invariant (LTI) single input-single output systems and concerning an
invariant and a canonical form of the transfer function matrix of the closed
loop system under dynamic feedback compensation is generalized for LTI
multivariable systems. Based on this result, we characterize the class of
transfer function matrices that are obtainable from an open loop transfer
function matrix via the use of proper dynamic feedback compensators and
show that if the closed loop transfer function matrix � � has a desired
denominator polynomial matrix which satisfies a certain sufficient condi-
tion, then there exists a proper compensator giving rise to an internally
stable closed loop system, whose transfer function matrix is � �.

Index Terms—Decoupling, denominator assignment, Euclidean algo-
rithm, proper feedback compensators.

I. INTRODUCTION

Let � be a linear, time invariant (LTI), stabilizable multivariable
system characterized by a strictly proper transfer function matrix � ���
and consider the transfer function matrix����� of the closed loop feed-
back system �� in Fig. 1 where 
��� is the transfer function matrix of
a proper dynamic compensator. In this technical note, using mainly
the Euclidean division for polynomial matrices [1], [7], [8], we first
generalize to the multivariable case a result (originally reported in [6]
for single input-single output systems) that concerns an invariant and
a canonical form of the transfer function matrix ����� of the closed
loop system �� obtained from � ��� via feedback through a proper
compensator 
���. This result leads to the characterization of the class

� ����� of closed loop transfer function matrices����� that are obtain-
able from � ��� via the use of proper dynamic feedback compensators

���. We next determine the class� of open loop transfer function ma-
trices � ��� that give rise to an internally stable closed loop system ��
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