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a b s t r a c t

We consider a newsvendor who makes an ordering decision to meet stochastic demand and buys a put
option written on the demand to hedge against the risk of low demand to maximize his expected utility,
which is measured by the conditional value-at-risk (CVaR). The put option is fairly priced with
specifications for the strike price and the strike quantity. With the consideration of lost-sale penalty
cost, we derive structural results on the optimal ordering and hedging polices. We show that the
newsvendor will not order more than that without the option contract when the strike quantity is pre-
determined and low, and he will order more when the strike quantity is a decision variable. Moreover,
the optimal strike quantity is less than or equal to the optimal order quantity in the risk-neutral setting,
and interestingly there are cases in which the optimal hedging ratio first increases, then keeps constant
as the newsvendor becomes less risk averse. We also show that the value of the put option increases as
the newsvendor becomes more risk averse and demand becomes more uncertain. Furthermore, the
effect of risk aversion on the value of the option highly depends on the magnitudes of the system
parameters.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Short product life, long production lead time, low demand
certainty, and high product variety are typical characteristics of
today's business environment, which lead to low profit margin and
high risk for firms. To survive in such an uncertain environment,
firms have to adopt various approaches to cope with various
business risks, especially the kind of demand risk that is associated
with the weather. Examples of industries in which demand is
highly correlated with weather are as follows: (1) a jacket
company located in the North of England reported a third-
quarter drop in earnings of 12% compared with the third-quarter
of the previous year. It was also found that three years ago the
third-quarter earnings were lower by as much as 14.5%. In both
cases the company believed that the losses were due to milder
than usual winters. Historical data indicate a 91% correlation
between the temperature and the number of items of cold
weather clothing sold by the company (Speedwell Weather
Derivatives Ltd., 2003). (2) Demand for electricity is also weather
sensitive. As shown in Fig. 1, electricity demand in California is

highly correlated with the daily temperature where demand is
strictly increasing after the threshold temperature (Franco and
Sanstad, 2006). To hedge against the demand risk due to the non-
financial impact of adverse (but non-catastrophic) weather condi-
tions, weather contracts/derivatives (options, futures, combina-
tions of both, etc.) have been widely used by firms such as the
winter jacket manufacturer mentioned above. Zellner et al. (2001)
report that in early 2001, a small clothing cataloger asked Enron to
create a derivative product (i.e., a forward contract) to protect
against hot weather that might decrease the sales of winter
clothes. According to WRMA (2006), both exchanges and over-
the-counter (OTC) markets for weather derivatives have emerged.
Weather derivatives traded in the Chicago Mercantile Exchange
(CME) have grown to a $45 billion per year industry in the U.S.

These above stories reveal the possibility and desirability that
non-financial firms can diversify their demand risk through trad-
able buying/selling derivatives such as forward contracts or
options, motivate us to investigate the optimal ordering and
hedging strategy for a newsvendor when he wants to hedge his
downside risk by a tradable put option. The put option gives the
buyer “the right but not the obligation” to sell a quantity of the
product at a given price after demand realization. Indeed, such a
put option can be regarded as a simplified version of the put
weather option for retailers whose demand is highly correlated
with weather conditions. Moreover, for the ease of analysis, we
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assume that the option is written on the demand directly (see Gao
et al., 2011). Such options have two important parameters, namely
the strike quantity and the strike price. The strike quantity is the
threshold level such that if the realized demand falls below it, the
option writer pays the newsvendor the strike price for each
leftover unit within the difference between the strike quantity
and the realized demand; otherwise, the option writer does not
pay anything and the option is valueless. In practice, the pricing of
weather derivatives is usually by the non-arbitrage approach
based on historical data or Monte Carlo based simulations
(Garman et al., 2000) in which the non-financial variables such
as “degree days” in weather contracts or “total demand” faced by
the newsvendor can be determined by applying the actuarial
approach to the analysis of historical data (Hull, 2003, p. 678).

Indeed, applying real options (i.e., combinations of spot markets,
forward contracts, and options) to risk management in the high-tech
industry, particularly with regard to the management of supply chains,
has been generating significant value to shareholders in the long run
(Billington et al., 2003). However, the tradable put option we studied
in this paper is different to the real option contracts. First, the exercise
of the proposed real put option depends on both the ordering quantity
and the realized demand, while that of the tradable put option
depends only on the realized demand. Second, the pricing strategies
are different. The price of the real option is usually implicitly included
in the ordering price, while the price of the tradable put option is
determined by the non-arbitrage approach. Third, the risk transferring
mechanisms are different. The tradable put option approach diversifies
the supply chain risk to outsider risk bearer while the real option
approach allocates the risk between the supply chain partners.
Actually, the return policy offered by the supplier can also be regarded
as a real option mechanism provided by the supplier. Thus, our put
option is also different from the return policy in the above three ways.

Specifically, based on the newsvendor model as a framework,
we develop the optimal ordering and hedging decisions for the
newsvendor that is downside risk averse, when the put option
written on demand is incorporated. Downside risk aversion imp-
lies that the decision maker cares more about under-performance
relative to the mean, which is perceived as hazardous. Thus, con-
sidering a downside risk measure instead of the symmetric risk
measure used in Chen and Parlar (2007) will provide more realistic
results. Specifically, we use conditional value-at-risk (CVaR) to
measure the newsvendor's risk attitude. The CVaR criterion is a
coherent risk measure that measures the average value of the
profit falling below a given quantile level, i.e., value-at-risk (VaR)
(defined as the maximum profit at a specified confidence level
Jorion, 2000). CVaR has emerged as a practical approach for
modelling risk aversion with wide applications in economics,
finance, and insurance (Rockafellar and Uryasev, 2000).

We make two major contributions in this paper. First, we derive
structural results on the optimal ordering and put option decisions
under the CVaR downside risk measure. Second, we examine how

the system parameters, risk averse attitude, and demand uncer-
tainty affect the value of the option. Our findings facilitate the
implementation of put options in supply chain management. Spe-
cifically, we show that when the strike quantity is pre-determined
and low, the newsvendor will not order more than that without
the option contract because the benefit of the put option is totally
offset by the cost of the put option. However, when the strike
quantity is a decision variable, we find that, when an option is
used, the optimal order quantity is higher than that without an
option. Moreover, we find that the optimal strike quantity is less
than or equal to the optimal order quantity in the risk neutral sett-
ing, and there are cases in which the optimal hedging ratio (i.e.,
strike quantity/order quantity) first increases, then keeps constant
as the newsvendor is less risk averse, which is rather counter-
intuitive. Furthermore, we find that the value of the put option
increases as the newsvendor becomes more risk averse and dem-
and becomes more uncertain, and the effect of risk aversion on the
value of the option highly depends on the magnitudes of the
system parameters.

The rest of this paper is organized as follows: In the next sec-
tion we review the related literature, which is followed by model
formulation in Section 3. In Section 4 we solve the considered
problem and generate insights from the analysis. In Section 5 we
report the results of numerical examples to verify the theoretical
analysis in Section 4. We conclude the paper and suggest topics for
future research in Section 6.

2. Literature review

There are three research areas that are most relevant to our
study, namely risk analysis in operations management, risk mea-
surement, and supply chain contracts with options.

The literature on risk-averse operational models is quite limited.
Lau (1980) analyzes the classical newsvendor model with respect to
two different objective functions: maximization of the decision
maker's expected utility and maximization of the probability of
achieving a certain profit level. Eeckhoudt et al. (1995) study the
effects of risk and risk aversion on a newsvendor's decisions when risk
is measured by expected utility functions. Chen and Federgruen (2001)
establish some standard infinite horizon inventory models to study
the mean–variance tradeoff between customer waiting time and
inventory level. Chen et al. (2007) consider a finite horizon inventory
problem with exponential utility functions. They derive the optimal
inventory decision, as well as the optimal pricing behaviour. Wu et al.
(2010) study a commitment-option supply contract in the CVaR
framework without information updating. Xu and Li (2010) study
the newsvendor problem in the mean-CVaR framework. Buzacott et al.
(2011) study a class of commitment-option supply contracts in the
mean–variance framework. Ma et al. (2012a) study the channel
bargaining problem with a risk-averse retailer who uses CVaR as the
risk measure. Zhou et al. (2008) study the optimal ordering decisions
for the multi-product problem with stochastic demand under return-
CVaR model. They show that return-CVaR model is more flexible than
the classical CVaR model. Chen et al. (2009) study the newsvendor
problem with pricing and ordering decisions in the CVaR framework.
They provide the conditions under which there exist optimal pricing
and ordering decisions for the additive demand and multiplicative
demand models. Caliskan-Demirag et al. (2011) compare the retailer
rebate and customer rebate under CVaR risk measure. They find that
risk attitude is an important parameter to determine which rebate
scheme to use. Qiu et al. (2014) study the robust inventory decision
under distribution uncertainty with a CVaR-based optimization
approach, where demand information is incomplete. They find that
the performance under both ellipsoid and box uncertain distributions
is robust. For more recent literature on risk-averse operational models,

Fig. 1. Electricity demand with respect to average daily temperature.
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we refer readers to Choi and Chiu (2012) for a thorough review.
However, all the above works only use the option concept in the
model, especially when the option price is provided through a fair
price mechanism. For example, the commitment-option supply con-
tracts studied in Wu et al. (2010) are actually flexible supply contracts.

The second relevant stream of research concerns risk measure-
ment. It is well known that three major risk measures are widely used
in financial studies, i.e., mean–variance and its variants, VaR, and CVaR.
Each of these measures has its strengths and limitations. Mean–
variance analysis is an important approach to modelling risk aversion
(see Markowitz, 1959). It satisfies a class of decision makers with
concave quadratic utility functions, but it is inadequate in the sense
that it equally quantifies desirable upside outcomes and undesirable
downside outcomes, rendering mean–variance a symmetric risk
measure. VaR allows the decision maker to specify a confidence level
for attaining a certain level of wealth (see Jorion, 2000). It is widely
used to characterize downside risk in financial institutions. However, it
has been criticized recent years in three aspects (Zhu and Fukushima,
2009): none sub-additivity under general distributions, existence of
multiple local extrema for some discrete distributions, and inadequate
characterization of uncertainty. To remedy the deficiencies of VaR, the
CVaR measure, which measures the average profit falling below a
given quantile level, was introduced. CVaR is a coherent risk measure
that satisfies the properties of convexity and subadditivity (see Follmer
and Schied, 2010). Schweitzer and Cachon (2000) present several
alternative risk measures, including the prospect utility function, for
the newsvendor model. Wang and Webster (2009) study the news-
vendor problem under the loss-averse utility function with zero
reference target. Ma (2008) extends their work to include a general
reference target. Ma et al. (2012b) study the loss-averse newsvendor
model with two ordering opportunities and market information
updating. Although consideration of downside risk is very important,
there is no previous work that incorporates CVaR into the newsvendor
model with a put option.

The last relevant stream of literature is supply chain contracts
with options. This stream of literature is quite limited. de Albeniz
et al. (2006) consider the impact of a supply option contract on the
newsvendor. Ding et al. (2007) study the interaction of operational
and financial hedging policies of a risk-averse global firm facing
demand and exchange uncertainty in the two-stage newsvendor
setting. Gaur and Seshadri (2005) consider the problem of hedging
against inventory risk in the newsvendor setting in which the
product demand is correlated with the price of a tradable financial
asset. Burnetas and Ritchken (2005) investigate the pricing of
options with a downward sloping demand curve where a manu-
facturer offers the retailer the right to re-order (call option) and/or
the right to return unsold goods at a pre-determined salvage value
(put option). They formulate the problem to maximize the
manufacturer's net present value and conclude that the retailer
will either benefit from or be worse off with the options in terms
of net present value. Wang et al. (2012) analyze the risk associated
with introducing a call option in the two-period newsvendor
setting. They find that even if providing a higher expected profit
at the beginning of a planning horizon, supply contracts with
options may have the risk associated with a worse performance
later compared with the traditional newsvendor contract model.
They also derive two important parameters for the buyer to
estimate the risks of introducing options. Zhao et al. (2013)
implement the value-based approach to price the real supply
chain options and they show that their pricing schemes are more
objective and fair than the traditional Stackelberg game approach.
Chen and Parlar (2007) study the value of a put option based on
the newsvendor model where the newsvendor uses a quadratic
utility function and a put option can be purchased to reduce the
loss resulting from low demand. The option is priced fairly with
specifications on the strike quantity and the strike price. The

newsvendor not only chooses the order quantity but also deter-
mines the strike price and/or the strike quantity of the put option.
Recently, Gao et al. (2011) study the joint optimal ordering and
weather hedging decisions with a mean-CVaR model. Modelling
the demand as a stochastic decreasing function of the temperature
index, they use the temperature call option to hedge against the
demand risk associated with the temperature volatility. They find
that the weather derivative hedging can increase the order
quantity. In summary, none of the above research studies the joint
decisions of inventory and put options in the newsvendor setting,
except Chen and Parlar (2007) and Gao et al. (2011).

Our research is mostly related to Chen and Parlar (2007). With
a risk-neutral objective and a quadratic utility function, they show
that the same order quantity maximizes the expected profit with
or without the option while the decisions on the strike price, as
well as the strike quantity, of the put option do not affect the
expected profit but the expected variance. Different from their
work, our paper employs a downside risk measure, i.e., CVaR, to
study the optimal ordering decision, as well as the optimal strike
quantity for the put option, and analyze the effects of the system
parameters on the choice of the put option. Moreover, in Chen and
Parlar (2007), the decisions are made sequentially in the sense that
the optimal hedging decision seeks to minimize the variance. We
find that the structural results on the ordering and hedging
quantities are related to the risk aversion attitude of the news-
vendor and the strike price of the option. Furthermore, the
inclusion of a put option does not necessarily induce the news-
vendor to order more, as that depends on whether the strike
quantity is a decision. This result is different from that of Gao et al.
(2011), who find that weather derivative hedging always increases
the order quantity.

3. Model formulation

3.1. The basic model

We consider a two-stage supply chain with a manufacturer and a
retailer (the newsvendor). The newsvendor is risk averse and sells a
fashion product, during a single selling season, at price s with random
demand X. The retailer tries to maximize his risk measure, which is
measured by the CVaR of his profit. CVaR, a downside risk measure,
measures the average profit falling below a given quantile level (see
Appendix for a further discussion of CVaR).

In addition to CVaR, mean–variance and VaR are two widely
used risk measures in practice. The mean–variance risk measure
equally quantifies desirable upside outcomes and undesirable
downside outcomes. Yet, in practice, people care more about the
undesirable downside outcomes. The VaR risk measure focuses on
the undesirable downside outcomes. However, it is not a coherent
risk measure due to its none sub-additivity under general dis-
tribution. The CVaR risk measure indeed remedies the deficiencies
of mean–variance and VaR as it only considers the undesirable
downside outcomes and is a coherent risk measure. Thus, we will
employ CVaR as the risk measure throughout the whole paper.

At the beginning of the selling season, the newsvendor deter-
mines the order quantity Q at unit wholesale price c offered by the
manufacturer. The cumulative distribution function and the prob-
ability distribution function of X are F(x) and f(x), with xA ½0;1Þ,
respectively. To hedge against the risk of low demand in the selling
season, the newsvendor can buy a put option from an option
writer at price p. The put option specifies the strike price Kp and
the strike quantity Kq before demand is realized, i.e., the news-
vendor can exercise the option at strike price Kp at the end of the
selling season when xrKq, while the put option has no value to
the newsvendor when x4Kq. Thus, the option price p should be a
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function of both the strike price Kp and the strike quantity Kq. Such
a put option may seem artificial at first glance. However, as
discussed earlier, retailers in industries whose demand is highly
correlated with some measurable and tradable variables, e.g., the
weather index or the stock index, can use the corresponding
financial derivatives to hedge against the demand risk. Further-
more, the findings of studies in such industries will provide
insights and guidance to suppliers and retailers to hedge against
demand risk in other industries.

In this paper we assume that the strike price Kp is exogenously
determined, while the strike quantity Kq is determined by the
newsvendor when he decides to engage in such an option
contract. This is exactly the case with the weather derivative
market in which the participants can determine the strike tem-
perature (which is highly correlated with the demand for some
industries), while the strike price of each degree of the tempera-
ture is pre-determined. In the following analysis, we denote p by
PðKqÞ to reflect the dependence of the option price p on the strike
quantity Kq, but omit the explicit relationship with Kp in the
formula as we assume that Kp is exogenously determined.

Upon demand realization, the newsvendor can choose whether
or not to exercise the put option (if any). In addition, the news-
vendor incurs a unit shortage cost b for any unsatisfied demand
and receives a unit salvage value v for any leftover inventory after
demand is realized. We assume that the option writer can also
salvage the product (if any) at unit value v at the end of the selling
season. This assumption is mainly to ease the analysis without loss
of generality. Actually, charging different salvage value for the
newsvendor and the option writer does not change the main
conclusions in this paper, yet complicates the analysis. On the
other hand, this assumption has also its own practical background.
For example, when the product has a public secondary market,
which can be freely accessed by both the retailer and the supplier,
the salvage prices will be the same. Even if there is no such
market, it is also reasonable to assume the same salvage prices, as
the prices for the same products will converge eventually by the
spirit of non-arbitrage approach. Issues related to unsold units of
the product, such as transshipment, re-selling, and so on are
beyond the scope of our study here. Throughout this paper we
assume that both parties have complete information on the unit
revenues, unit costs, and the distribution of the random demand.
To avoid triviality, we assume that s4c4v, sZKpZv, which is
consistent with Chen and Parlar (2007).

Thus, based on the definition of CVaR (see Appendix), the
objective of the newsvendor, as a rational decision maker, is to
choose the optimal nonnegative order and strike quantities Q and
Kq, respectively, that solve the following optimization problem:

max
Q Z0;Kq Z0

max
ξAR

fgðQ ;Kq; ξÞg: ð1Þ

in which

gðQ ;Kq; ξÞ≔ξ�1
η
E½ξ� π̂ ðX;Q ;KqÞ�þ ;

and π̂ ðx;Q ;KqÞ is the newsvendor's profit, with the put option, as a
function of the order quantity, strike quantity and the realized
demand x at the end of the selling season.

4. Static inventory and hedging decisions with a put option

4.1. Price of the put option

Now we analyze the price PðKqÞ of the put option as a function of
Kq. In the finance literature, the option price of an option is always
priced by its expected discounted payoff evaluated under the risk-
neutral measure (i.e., by the no-arbitrage approach). However, if the

underlying asset is not tradable, we cannot price the put option by
the no-arbitrage approach but by the actuarial approach (Hull, 2003,
p. 678). Based on this idea, in this paper, like Chen and Parlar (2007),
we assume that the option writer charges the newsvendor a positive
risk premium r plus the expected benefit accruing to the newsvendor
so that the price of the option is obtained as follows:

PðKqÞ ¼ ðKp�vÞ
Z Kq

0
ðKq�xÞf ðxÞ dxþr; ð2Þ

where

∂P
∂Kq

¼ ðKp�vÞFðKqÞZ0; ð3Þ

∂2P
∂K2

q

¼ ðKp�vÞf ðKqÞZ0: ð4Þ

Here r measures both the relative risk attitude of the option writer
and the additional cost incurred by the newsvendor when he transfers
his demand risk to the third party. Furthermore, by comparing the
case where there is no put option with the case where there is a put
option, r can be used to analyze whether the newsvendor should or
should not buy the put option. Furthermore, we can determine the
break-even value of r. In our analysis, we assume that r is a constant,
which is consistent with Chen and Parlar (2007). For further discussion
of the valuation of this option and the risk premium r, we refer the
reader to Chen and Parlar (2007).

Note that our pricing formula for the put option contract (2)
leads to the fact that the price of the put option is endogenously
determined by the newsvendor in choosing the strike quantity Kq.
This is one of the major differences between our study and Wu
et al. (2010). In their work, the (call) option contract's price and the
strike quantity are both determined exogenously. In contrast, we
show that, by (2) in our model, the newsvendor's decision on the
strike quantity Kq also affects the price of the option. In fact, the
price of the option is convex increasing in the strike quantity.

4.2. Newsvendor's profit

Now, we go further to discuss the formulation of the news-
vendor's profit. When KqrQ , the expression of π̂ ðx;Q ;KqÞ for a
realized value of demand X¼x is

π̂ ðx;Q ;KqÞ ¼
π̂1ðx;Q ;KqÞ if xoKq;

π̂2ðx;Q ;KqÞ if KqrxrQ ;

π̂3ðx;Q ;KqÞ if x4Q ;

8><
>: ð5Þ

where

π̂1ðx;Q ;KqÞ ¼ sxþKpðKq�xÞþðv�cÞQ�vKq�PðKqÞ;
π̂2ðx;Q ;KqÞ ¼ ðs�vÞxþðv�cÞQ�PðKqÞ;
π̂3ðx;Q ;KqÞ ¼ ðs�cþbÞQ�bx�PðKqÞ:
Here, if the realized demand xoKq, then the newsvendor makes a
profit of s�c for each of the x units he sells, receives Kp�c for the
Kq�x units that are covered by the put option, and receives a net
amount of v�c for the Q�Kq units that are not covered by the put
option but salvaged. When KqrxrQ , the option cannot be
exercised and the newsvendor receives a net amount of v�c for
the Q�x units that are salvaged. Finally, when x4Q , the news-
vendor can sell only Q units and incurs a goodwill loss of b per unit
for x�Q units of shortage. In particular, when Kq¼0 and PðKqÞ ¼ 0,
π̂ ðx;Q ;KqÞ in (5) reduces to the classical newsvendor problem. It is
well known that the unique solution to this newsvendor problem
in the risk neutral setting Qu (where the superscript u denotes
“risk neutral”) solves

FðQuÞ ¼ s�cþb
s�vþb

:
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We see in the subsequent analysis that Qu plays an important role
in determining the optimal strike quantity of the put option.

When Kq4Q , the expression of π̂ ðx;Q ;KqÞ for a realized value
of demand X¼x reduces to

π̂ ðx;Q ;KqÞ ¼
π̂ 0
1ðx;Q ;KqÞ if xoQ ;

π̂ 0
2ðx;Q ;KqÞ if x4Q ;

(
ð6Þ

where

π̂ 0
1ðx;Q ;KqÞ ¼ sxþKpðQ�xÞ�cQ�PðKqÞ;

π̂ 0
2ðx;Q ;KqÞ ¼ ðs�cþbÞQ�bx�PðKqÞ:

Regardless of the price of the put option, i.e., PðKqÞ ¼ 0, the
expression π̂ ðx;Q ;KqÞ in this case is equivalent to the newsvendor
problem with a salvage value Kp.

Before we further analyze our model, we first present the optimal
inventory policy for a risk-averse newsvendor to maximize his CVaR
when there is no put option. Denote QN as the order quantity without
any put options and QA as the order quantity with a put option both
under the risk-averse setting. Xu and Li (2010) derived the result,
which we summarize in the following lemma.

Lemma 4.1. The optimal order quantity for the risk-averse news-
vendor is

QN ¼ 1
sþb�v

ðs�vÞF �1 ηðsþb�cÞ
sþb�v

� �
þbF �1 1� ηðc�vÞ

sþb�v

� �� �
:

As discussed in Xu and Li (2010), QN may not be monotonic in η,
and may be less or greater than the corresponding risk-neutral
solution Qu. That is, the optimal order quantity under the CVaR
criterion may be higher or lower than its counterpart under the
risk-neutral criterion. Moreover, Xu and Li (2010) showed that QN

is strictly increasing in b, while it is strictly decreasing in c.

4.3. Optimal ordering decision with given strike quantity

We now first consider the optimal ordering policy for the
newsvendor with a given strike quantity Kq. We will analyze the
case where the newsvendor can determine both the strike
quantity and the ordering quantity later.

To facilitate our analysis, we define the following values:

K ¼ b
sþb�Kp

F �1 1� ηðc�KpÞ
sþb�Kp

� �
þ ðs�KpÞ
sþb�Kp

F �1 ηðsþb�cÞ
sþb�Kp

� �
;

KM ¼ b
sþb�Kp

F �1 1� ηðc�vÞ
sþb�v

� �
þ ðs�KpÞ
sþb�Kp

F �1 ηðsþb�cÞ
sþb�v

� �
;

K ¼ F �1 η
sþb�c
sþb�v

� �
;

where K is defined when Kpoc, which is the optimal solution for
the CVaR maximizer with unit salvage value Kp when compared

with QN in Lemma 4.1. Note that when the shortage cost b-0, K is
equal to QN, so K is a critical value for the order quantity under
CVaR when shortage cost is negligible. KM is a linearly weighted
combination of K and K . Similar to Xu and Li (2010), we have the
following lemma about the properties of these values.

Lemma 4.2. K and KM are increasing in Kp and b, and decreasing in
c; KM is increasing in v.

We omit the proof as the results can be easily obtained by
taking the first-order derivatives. From this lemma and the
assumption that KpZv, we see that K and KM are always greater
than QN, and K is greater than KM. On the other hand, as ηr1 by
the definition of CVaR,

1� ηðc�vÞ
sþb�v

�ηðsþb�cÞ
sþb�v

Z0;

so

QN ¼ 1
sþb�v

ðs�vÞF �1 ηðsþb�cÞ
sþb�v

� �
þbF �1 1� ηðc�vÞ

sþb�v

� �� �

Z
1

sþb�v
ðs�vÞF �1 ηðsþb�cÞ

sþb�v

� �
þbF �1 ηðsþb�cÞ

sþb�v

� �� �
¼ K :

The following lemma summarizes the above analysis.

Lemma 4.3. KZKMZQNZK .

In fact, these values and their corresponding properties define
different areas of the strike quantity Kq in which the optimal order
quantity varies, as stated in the following theorem.

Theorem 4.1. Given the strike quantity Kq, if the strike price is larger
than the ordering cost, i.e., KpZc, the optimal ordering quantity QA is

QA ¼

Kq; KqZKM ;

1
s�vþb

½ðKp�vÞKqþðsþb�KpÞKM �; KM4KqZK ;

QN ; K4Kq;

8>>>><
>>>>:

if the strike price is lower than the ordering cost, i.e., vrKpoc, the
optimal ordering quantity QA is

QA ¼

K ; KqZK ;

Kq; K4KqZKM ;

1
s�vþb

½ðKp�vÞKqþðsþb�KpÞKM �; KM4KqZK ;

QN ; K4Kq:

8>>>>>><
>>>>>>:

An illustration of the optimal solution is shown in Fig. 2. If the
ordering cost c is lower than the strike price Kp, the optimal order
quantity depends on the relative value of Kq with respect to K and
KM: when KqZKM , it is optimal for the newsvendor to order

Fig. 2. Optimal order quantity when the strike quantity of the put option is given. (a) The case for Kpoc. (b) The case for KpZc.
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exactly the same quantity as the strike quantity Kq; when Kq

A ½K ;KMÞ, the newsvendor should order the quantity that is a
linear combination of Kq and KM, i.e., QA ¼ λKqþð1�λÞKM with
λ¼ Kp=ðs�vþbÞ; when Kq is lower than K , the newsvendor should
only order QN, which is the quantity when there is no put option. If
the ordering cost c is higher than the strike price Kp, the optimal
ordering policy remains the same when KqoKM . However, when
KqZKM , we can further divide Kq into two groups by K : when
KqZK , it is optimal to order exactly K ; when KqA ½KM ;K Þ, it is
optimal to order Kq.

Combining this theorem with Lemma 4.3, we show that the
optimal order quantity QA is lower than Kq only if Kpoc; other-
wise, it is always optimal for the newsvendor to order more than
(or equal to) the strike quantity. Moreover, when Kq is larger than
K , the optimal order quantity will be higher than that when there
is no put option. This is rather intuitive as the put option can be
used to hedge against demand risk. However, when Kq is lower
than K , the optimal order quantity is equal to that when there is
no put option. This implies that the inclusion of a put option does
not increase the order quantity when the strike quantity of the
option is rather low. This result is somewhat counter-intuitive. The
reason is that, in this case, the benefit from the option contract is
totally offset by the additional cost incurred by the newsvendor.

4.4. Optimal decision on the strike quantity and order quantity

Based on the analysis in the previous section, we now analyze
how the newsvendor should determine both the strike quantity
and the order quantity to maximize his CVaR. We assume that
KpZv and ηo1 to rule out the cases where the option contract is
of no use and the newsvendor is risk neutral.

Before we present the optimal policy, we first define two
critical values Q1 and Q2 as follows:

Q1 ¼
1

s�vþb
½ðKp�vÞQuþðsþb�KpÞKM� and GðQ2Þ ¼ 0;

in which

GðtÞ ¼ ðsþb�KpÞt�bF �1 1�η
ðKp�vÞFðtÞ�ðKp�cÞ

sþb�Kp

� �
�ðs�KpÞF �1

� η
ðsþb�cÞ�ðKp�vÞFðtÞ

sþb�Kp

� �
:

Here Q1 is a linear combination of the risk-neutral quantity Qu and
the threshold KM, while Q2, if exists, lies in ðF �1ððKp�cÞ=ðKp�vÞÞ;

F �1ððsþb�cÞ=ðKp�vÞÞ, in which the function F �1ð�Þ is well defined.
We will discuss the existence of Q2 later. We present the following
lemma about the properties of Q1 and Q2 (when exists).

Lemma 4.4. Both Q1 and Q2 are decreasing in the unit cost c, and are
increasing in the penalty cost b, strike price Kp, and salvage value v.

We omit the proof, which is straightforward by taking first-
order derivatives. The result establishes monotone properties of Q1

and Q2 with respect to the system parameters, which are useful to
account for the monotone properties of the optimal ordering and
hedging policies in later analysis.

Similar to the discussion in Xu and Li (2010), the relative sizes
of Q1 and Qu depend on the system parameters. For example, when
Kp ¼ s, Q14Qu, whereas when Kp ¼ v, Q1 ¼ QN , which is lower
than Qu as η approaching 1. This is also illustrated in Fig. 3(a). Thus,
the value of Q1 may be less or greater than the risk-neutral value
Qu, as η varies. Moreover, we can establish the following result
concerning the relationships among Q1, Q2, and Qu.

Lemma 4.5. The relationships among Q1, Q2, and Qu are one of the
following: (i) Q1oQu and KMoQ2oQu; (ii) Q14Qu and Q24Qu;
and (iii) Q1 ¼Qu ¼ Q2.

This lemma means that both Q1 and Q2 are higher, lower, or
equal to Qu at the same time (see Fig. 3(a)). This property will ass-
ist our analysis of the existence of Q2 when Q1oQu for b40 and
s4Kp. To see this, substituting Qu into G(Q) yields GðQuÞ ¼ ðsþb
�KpÞðQu�Q1Þ40, while limQ-F � 1ððKp � cÞ=ðKp �vÞÞGðQ Þo0. However,
for practical and numerical analysis purposes, the definition area
of F(x) is always restricted to the finite area ½U ;U � with UZ0. In
this case, we find that Q2 exists when

UZ
sþb�Kp

b
F �1 Kp�c

Kp�v

� �
�s�Kp

b
F �1ðηÞ

or Kprc. In this paper we assume that F(x) is continuous and
differentiable when xA ½0;1Þ. Moreover, this lemma is essential to
further analysis of the optimal policy, which is stated in the
following theorem.

Theorem 4.2. The optimal order quantity Qn and the optimal strike
quantity Kn

q for the newsvendor are

ðQn;Kn

qÞ ¼
ðQ1;Q

uÞ if Q1ZQu;

ðQ2;Q2Þ otherwise:

(

Fig. 3. An illustration of the optimal policies with respect to η (with parameters in Table 1). (a) Optimal Q1 and Q2 with respect to η. (b) Optimal hedging ratio ρ with respect to η.
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Thus, we have derived the optimal policy for the newsvendor
to maximize his CVaR: when the system parameters (i.e., s, c, R, v,
b, and η) satisfy Q1ZQu, the optimal order quantity is Q1, while
the optimal strike quantity is equal to the risk-neutral newsvendor
solution Qu; when these parameters satisfy Q1oQu, the optimal
order quantity and strike quantity are equal to the same value Q2.
This result is different from that of the analysis in the symmetric
quadratic concave function framework, in which the order quan-
tity is always Qu (see Chen and Parlar, 2007). However, from
Lemma 4.5 and Theorem 4.2, we find that the inclusion of a put
option for a downside risk-averse decision maker may increase,
decrease, or equal to the risk-neutral order quantity.

Combining this theoremwith Lemma 4.5, we conclude that the
order quantity with a put option is higher than that without a put
option, i.e., Qn4KM4QN . Thus, when the newsvendor can choose
both the order quantity and the strike quantity, the inclusion of
the put option always induces the newsvendor to order more. This
is different from the case where the strike quantity is given
exogenously, in which the newsvendor only orders more when
the strike quantity is large. Moreover, it is interesting to note that
the newsvendor's optimal strike quantity is lower than or equal to
the risk-neutral newsvendor solution. Other properties associated
with the policy parameters are straightforward: the optimal order
quantity and the strike quantity are decreasing in the unit cost and
the penalty cost, while they are increasing in the unit salvage
value; and the optimal order quantity and strike quantity may not
be monotone with risk aversion η (see Fig. 3(a)).

Remark. If we define the optimal hedging ratio as ρ¼ Kq=Q , then
the above theorem implies that when it is optimal for the new-
svendor to order more than the risk-neutral solution, the optimal
hedging ratio ρo1; otherwise, ρ¼ 1. This is also illustrated in
Fig. 3(b). This result shows that the hedging ratio, ρ, is increasing
in η, i.e., high risk aversion implies a low hedging ratio. This is
rather counter-intuitive at first glance. The reason lies in the fact
that, in this case, Q14Qu when η is small, which results in the
maximum hedging quantity Qu. Thus, the optimal hedging ratio,
ρ, depends only on the value of Q1, which is decreasing in η as
Fig. 3(a) shows.

Remark. When b¼0, we have

Q1 ¼
s�Kp

s�v
F �1 η

s�c
s�v

� �
þKp�v

s�v
F �1 s�c

s�v

� �
oQu ð7Þ

Q2 ¼ F �1 ηðs�cÞ
ðs�KpÞþðKp�vÞη

� �
: ð8Þ

Thus, when there is no shortage penalty, it is always to the
newsvendor's advantage to hedge all his order quantity. Further-
more, Q2 is increasing in η. That is, the optimal order quantity is
lower when the newsvendor is more risk averse. This is similar to
the observation by Wu et al. (2010). However, our analysis shows
that this holds only when there is no goodwill cost, i.e., b¼0. On
the other hand, when b40, the optimal order quantity does not
increase in η (see Fig. 3(a)). This implies that when the strike price
is equal to the selling price, the optimal order quantity with a put
option increases with the risk averseness of the newsvendor.

4.5. Value of the put option

So far we have performed analysis under the assumption that
the newsvendor will accept the put option. However, to buy a put
option, the newsvendor will incur a cost PðKqÞ, which may cancel
out the benefit that the option brings. Thus, in this section, we
further study the newsvendor's optimal decision as to whether or
not to choose the put option.

Let CVaRK
η , CVaR

N
η be the maximum CVaR with and without a

put option, respectively. Then, the optimal decision for the news-
vendor is

do not buy the option if CVaRK
η oCVaRN

η ;

buy the option if CVaRK
η 4CVaRN

η :

8<
:
If CVaRK

η ¼ CVaRN
η , then the newsvendor chooses either decision

arbitrarily.
To ease the notation, let

A¼ F �1 1� ηðc�vÞ
sþb�v

� �
; A0 ¼ F �1 1�η

ðKp�vÞFðQ2Þ�ðKp�cÞ
sþb�Kp

� �
;

and

B0 ¼ F �1 η
ðsþb�cÞ�ðKp�vÞFðQ2Þ

sþb�Kp

� �
:

We can calculate the optimal CVaR for the newsvendor when the
option is used as follows: when Q1ZQu,

CVaRK
η ¼ �rþðKp�vÞ

Z Qu

0
xf ðxÞ dx�1

η
b
Z 1

A
xf ðxÞ dx�ðs�KpÞ

�

�
Z K

0
xf ðxÞ dx

�
;

and when Q1oQu, we have A04A, B04K , and

CVaRK
η ¼ �rþðKp�vÞ

Z Q2

0
xf ðxÞ dx�1

η
b
Z 1

A0
xf ðxÞ dx�ðs�KpÞ

�

�
Z B0

0
xf ðxÞ dx

#
:

Thus, by comparing CVaRK and CVaRN , we have the following
theorem about whether a put option is valuable to the news-
venodr and what the break-even value of the risk premium is, at
which there is no difference for the newsvendor to choose a put
option or not.
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Fig. 4. Break-even risk premium r with respect to η (with parameters in Table 1).

Table 1
Initial values for basic parameters.

Parameters Values Parameters Values

μ 100 v 5
σ 20 η 0.5
c 12 b 10
s 20 Kp 15
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Fig. 5. An illustration of the break-even premium r with respect to cost parameters. (a) Break-even risk premium r with respect to c. (b) Break-even risk premium r with
respect to s. (c) Break-even risk premium r with respect to Kp. (d) Break-even risk premium r with respect to b. (e) Break-even risk premium r with respect to v. (f) Break-
even risk premium r with respect to σ.
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Theorem 4.3. When r¼0, CVaRK
η ZCVaRN

η . The corresponding
break-even value r to use a put option is given as follows:

(i) if Q1ZQu, we have

r ¼ ðKp�vÞ
Z Qu

0
xf ðxÞ dx�1

η

Z K

0
xf ðxÞ dx

" #
;

(ii) if Q1oQu, we have

r ¼ ðKp�vÞ
Z Q2

0
xf ðxÞ dxþ1

η
b
Z A0

A
xf ðxÞ dxþðs�KpÞ

Z B0

0
xf ðxÞ dx

"

�ðs�vÞ
Z K

0
xf ðxÞ dx

�
:

That is, if the option writer charges a zero premium, it is always
optimal for the newsvendor to use the put option, as the one without
a put option is a special case with K¼0. Otherwise, the newsvendor's
decision as to whether or not to choose the put option depends on
whether the premium is higher or lower than the break-even value r .
Moreover, we observe that r is decreasing in η (see Fig. 4), which
implies that the more risk averse the newsvendor is, the higher is the
break-even premium. The risk premium is thus compensated by the
risk attitude of the newsvendor.

5. Numerical examples

In the previous section we established both analytically and
numerically the monotone properties of the optimal order quan-
tity with respect to the cost parameters. Moreover, we derived the
formula of the risk premium threshold, below which it is optimal
for the newsvendor to use the option contract. However, it is very
challenging to establish the relationships among the optimal
solution and demand uncertainty and risk attitude, especially for
the break-even risk premium r under CVaR, which is also called
the value of the put option. In this section we present some
numerical examples to demonstrate the impacts of the risk
attitude η, system parameters (unit cost, selling price etc.), and
demand uncertainty on the break-even risk premium r , respec-
tively. The objective is threefold: (i) to compare the results at
different level of risk aversion, (ii) to compare the results at
different levels of demand uncertainty, and (iii) to demonstrate
the impacts of system parameters on the break-even risk
premium.

The numerical examples are based on a truncated normal
distribution (i.e., the random variable defined in ½0;1Þ) with mean
μ and standard variance σ, which is used to measure the demand
uncertainty. The values for the parameters of the basic model are
listed in Table 1. In carrying out the computation, we varied one of
the parameters (i.e., c, s, Kp, b, v, and σ) while holding the other
parameters fixed.

Fig. 5 illustrates the relationships between the break-even risk
premium r and c, s, Kp, b, v, and σ, for η¼ 0:2, 0.5, and
0.8 respectively. Specifically, from Fig. 5(a), we see that the
break-even risk premium r decreases as the unit cost increases.
This is because the high unit cost shrinks the newsvendor's order
quantity and strike quantity, which reduces the risk of the new-
svendor, thus reducing the value of the put option. Following
similar reasoning, Fig. 5(b) shows that r increases as the selling
price increases and Fig. 5(d) shows that r increases as the sho-
rtage cost b increases. Fig. 5(c) and (e) show the effects of the
strike price Kp and the salvage value v, both of which directly
affect the value of the option. Fig. 5(c) shows that the value of the
put option increases as the strike price increases, although the

non-arbitrage cost of the put option (i.e., PðKqÞ for r¼0) is
increasing in Kp. Fig. 5(e) shows that the value of the put option
increases as the salvage value decreases, although the non-arb-
itrage cost of the put option is decreasing in v. Demand uncer-
tainty is also an important factor that affects the break-even risk
premium, as shown in Fig. 5(f). The more uncertain the demand
is, the greater is the break-even risk premium.

By comparing the distance between each line with η ¼ 0.2,
0.5, and 0.8 in each figure in Fig. 5, we conclude that the effect of
risk aversion on risk premium highly depends on the system
parameters' magnitudes. Specifically, Fig. 5(a) shows that the
effect of risk aversion η on r increases as c decreases, i.e., the
effect of risk aversion on risk premium is low when the unit cost
is high. Fig. 5(b) shows that the effect of risk aversion increases as
the selling price increases. Fig. 5(d) shows the effect of risk
aversion on risk premium is high when the shortage cost is high.
Fig. 5(c) implies that the effect of risk aversion on risk premium is
high when the strike price is high. Fig. 5(e) shows that the effect
of risk aversion on risk premium is high when the salvage value is
low. Fig. 5(f) shows that the effect of risk aversion on risk pre-
mium is high when demand uncertainty is large.

6. Conclusions

In this paper we develop the optimal ordering and hedging
policies for a newsvendor that is downside risk averse when a put
option written on demand is incorporated. The objective of the
newsvendor is to maximize his utility, which is measured by CVaR.
Based on the newsvendor framework, we derive structural results
on the optimal ordering and put option decisions with the CVaR
downside risk measure. Furthermore, we study how the system
parameters, risk averse attitude, and demand uncertainty affect
the value of the option. Our findings should facilitate the imple-
mentation of put options in supply chain management. Specifi-
cally, we show that when the strike quantity is pre-determined
and low, the newsvendor will not order more than that without
the option contract, as the benefit of the put option is totally offset
by the cost of the put option. However, when the strike quantity is
a decision variable, we find that, when an option is used, the
optimal order quantity is higher than that without an option.
Moreover, we find that the optimal strike quantity is less than or
equal to the optimal order quantity in the risk neutral setting, and
there exist cases in which the optimal hedging ratio first increases,
then keeps constant as the newsvendor is less risk averse, which is
rather counter-intuitive. Furthermore, we find that the value of the
put option increases as the newsvendor becomes more risk averse
and demand becomes more uncertain, and the effect of risk
aversion on the value of the option highly depends on the
magnitudes of the system parameters.

Our model can be extended in several directions. First, con-
sidering both upside risk and downside risk at the same time is a
possible extension. This can be done by using the bi-directional
option contract to hedge against both upside risk and downside
risk. Second, in our paper we do not investigate the option writer's
optimal behaviors, and thus one of the future study is to consider
how the option writer's behavior and attitude affects the hedging
behavior of the retailer. Third, as the tradable option and the real
option provide different risk transfer mechanisms, we can further
consider under a supply chain framework to see the equilibrium
behavior between the supplier and the retailer. The research
questions in this direction are as follows. Which mechanism is
better? When will the tradable option be beneficial to the
supplier? When will the supplier provide a real option? Are there
certain contracts that can coordinate such a supply chain? All
these issues should be addressed in future research.
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Appendix A

A.1. Downside risk measure: CVaR

We now formally describe the CVaR risk measure. CVaR is
commonly used by financial institutions and companies involved
in trading energy and other commodities. The original CVaR
considers the loss to the decision maker. However, for our
problem, it is more appropriate to consider the profit, which does
not change the property of the risk measure as negative profit is
loss (see Xu and Li, 2010). The objective to minimize loss-oriented
CVaR becomes the objective to maximize profit-oriented CVaR.
Given the newsvendor's random profit function Π̂ ðX;Q ;KqÞ, we
first define its value-at-risk (VaR), which is also called the η-
quantile, where η is the confidence level with support over ð0;1�,
as follows:

πηðΠ̂ ðX;Q ;KqÞÞ ¼ inffPrðΠ̂ ðX;Q ;KqÞrzÞZηg: ð9Þ

Given VaR, we can define CVaR in a general form for our model
according to Rockafellar and Uryasev (2000) as follows:

CVaRηðΠ̂ ðX;Q ;KqÞÞ ¼ E½Π̂ ðX;Q ;KqÞj Π̂ ðX;Q ;KqÞrπηðΠ̂ ðX;Q ;KqÞÞ�:
ð10Þ

Now we can optimize the CVaR of the retailer's random profit by
manipulating the decision variables. As this original definition is
hard for optimization, we use the following equivalent definition,
which is more convenient for optimization (see Rockafellar and
Uryasev, 2000; Xu and Li, 2010):

CVaRηðΠ̂ ðX;Q ;KqÞÞ ¼max
ξAR

gðQ ;Kq; ξÞ
� 	

;

gðQ ;Kq; ξÞ≔ξ�1
η
E½ξ�Π̂ ðX;Q ;KqÞ�þ ; ð11Þ

where R represents the real set and ξ is a variable in the real
set. The confidence level η also reflects the newsvendor's pre-
ference for downside risk, i.e., the smaller the η is, the more risk
averse is the newsvendor. When η¼ 1, the newsvendor is risk
neutral.

A.2. Proofs of the results

Before we prove the main results of this paper, we first find the
optimal ξ, given Q and Kq in the CVaR formulation (11) to maximize
gðQ ;Kq; ξÞ, i.e.,

max
ξ



ξ�1

η

Z Kq

0
ðξ� π̂1Þþ f ðxÞ dxþ

Z Q

Kq

ðξ� π̂2Þþ f ðxÞ dx
"

þ
Z 1

Q
ðξ� π̂3Þþ f ðxÞ dx

��
: ð12Þ

Given Kq, when KqZQ , we can replicate the analysis in Xu and Li
(2010) to obtain the optimal Qn as

Qn ¼min



1
sþb�Kp

ðs�KpÞF �1 ηðsþb�cÞ
sþb�Kp

� ��

þbF �1 1� ηðc�KpÞ
sþb�Kp

� ��
;Kq

�
; ð13Þ

where Kprc. Qn ¼ Kq when Kp4c.
Thus, we first consider the case where QZKq in this part. To

ease the notation, we use gðξÞ to denote gðQ ;Kq; ξÞ. Then, given Kq

and Q, depending on the value of ξ, we can give the expression of
gðξÞ, and then find the optimal unconstrained solution to it, by
considering the following four cases:

CASE I: When ξr ðKp�vÞKqþðv�cÞQ�PðKqÞ, we have

gðξÞ ¼ ξ�1
η

Z 1

ððs� cþbÞQ �PðKqÞ� ξÞ=b
½ξ�ðs�cþbÞQþPðKqÞþbx�f ðxÞ dx:

Then, for the unconstrained version of the optimization problem
(12), the optimal ξ satisfies the first-order condition and we have
ξðQ ;KqÞ ¼ ðs�cþbÞQ�PðKqÞ�bF �1ð1�ηÞ.

CASE II: When ðKp�vÞKqþðv�cÞQ�PðKqÞoξr ðv�cÞQþðs�vÞ
Kq�PðKqÞ, we have

gðξÞ ¼ ξ�1
η

Z 1

ððs� cþbÞQ �PðKqÞ� ξÞ=b
½ξ�ðs�cþbÞQþPðKqÞþbx�f ðxÞ dx

�1
η

Z ðξ�ðKp �vÞKq �ðv� cÞQ þPðKqÞÞ=ðs�KpÞ

0
½ξ�ðKp�vÞKq�ðv�cÞQ

þPðKqÞ�ðs�KpÞx�f ðxÞ dx:

Then, the first-order condition of the unconstrained version of (12)
implies that ξ̂ðQ ;KqÞ satisfies

η� 1�F
ðs�cþbÞQ�PðKqÞ�ξ

b

� �� �

�F
ξ�ðKp�vÞKq�ðv�cÞQþPðKqÞ

s�Kp

� �
¼ 0: ð14Þ

CASE III: When ðv�cÞQþðs�vÞKq�PðKqÞoξr ðs�cÞQ�PðKqÞ,
we have

gðξÞ ¼ ξ�1
η

Z Kq

0
½ξ�ðKp�vÞKq�ðv�cÞQþPðKqÞ�ðs�KpÞx�f ðxÞ dx

�1
η

Z ðξ�ðv� cÞQ þPðKqÞÞ=ðs�vÞ

Kq

½ξ�ðv�cÞQþPðKqÞ�ðs�vÞx�f ðxÞ dx

�1
η

Z 1

ððs� cþbÞQ �PðKqÞ� ξÞ=b
½ξ�ðs�cþbÞQþPðKqÞþbx�f ðxÞ dx:

Then, the first-order condition of the unconstrained version of (12)
implies that ~ξðQ ;KqÞ satisfies

η� 1�F
ðs�cþbÞQ�PðKqÞ�ξ

b

� �� �
�F

ξ�ðv�cÞQþPðKqÞ
s�v

� �
¼ 0:

ð15Þ
CASE IV: When ξ4 ðs�cÞQ�PðKqÞ, we have

gðξÞ ¼ ξ�1
η

Z Kq

0
½ξ�ðKp�vÞKq�ðv�cÞQþPðKqÞ�ðs�KpÞx�f ðxÞ dx

�1
η

Z Q

Kq

½ξ�ðv�cÞQþPðKqÞ�ðs�vÞx�f ðxÞ dx

�1
η

Z 1

Q
½ξ�ðs�cþbÞQþPðKqÞþbx�f ðxÞ dx:

The derivation of gðξÞ with respect to ξ is 1�ð1=ηÞ, which is
negative as ηr1, so gðξÞ is decreasing in ξ.
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By summarizing the above four cases, we conclude that the
optimal ξ for the constrained problem (12) is

ξn ¼
ξ if ðsþb�vÞQ�ðKp�vÞKqrbF �1ð1�ηÞ;
ξ̂ if bF �1ð1þFðKqÞ�ηÞþðs�vÞKqZ ðsþb�vÞQ4bF �1ð1�ηÞþðKp�vÞKq;
~ξ otherwise:

8>><
>>:

Here we implicity assume FðKqÞrη. When FðKqÞ4η, similar to the
above analysis, we can conclude that there are only the first
two cases.

Proof of Theorem 4.1. Now, given Kq, we start with determining
the optimal Q when QZKq to maximize

max
Q ZKq

gðξnÞ: ð16Þ

This will be achieved by considering the following three cases
and under the assumption that FðKqÞoη. The case where FðKqÞ4η
is similar and is neglected in this part.

Case 1: When ðsþb�vÞQ�ðKp�vÞKqrbF �1ð1�ηÞ, the optimal
solution ξn ¼ ξðQ Þ. Substituting ξn into gðξÞ and taking derivative
with respect to Q, we get

∂gðξÞ
∂Q

¼ 1
η

Z 1

ððs� cþbÞQ �PðKqÞ� ξÞ=b
ðs�cþbÞf ðxÞ dx40:

Case 2: When bF �1ð1þFðKqÞ�ηÞþðs�vÞKqZ ðsþb�vÞQ4
bF �1ð1�ηÞþðKp�vÞKq,
the optimal solution ξn ¼ ξ̂. Substituting ξn into gðξÞ and taking
derivative with respect to Q, we get

∂gðξ̂Þ
∂Q

¼ 1
η

Z 1

ððs� cþbÞQ �PðKqÞ� ξ̂Þ=b
ðs�cþbÞf ðxÞ dx

þ1
η

Z ðξ̂�ðKp �vÞKq �ðv� cÞQ þPðKqÞÞ=ðs�KpÞ

0
ðv�cÞf ðxÞ dx:

Combining the above equation with (14) and equating it to zero,
we find

F
ðs�cþbÞQ�PðKqÞ�ξ

b

� �
¼ 1�η

c�v
sþb�v

F
ξ�ðKp�vÞKq�ðv�cÞQþPðKqÞ

s�Kp

� �
¼ η

sþb�c
sþb�v

;

so the optimal Qn

2 to the unconstrained version of (16) satisfies

ðs�vþbÞQn

2�ðKp�vÞKq ¼ bF �1 1� ηðc�vÞ
sþb�v

� �
þðs�KpÞF �1

� ηðsþb�cÞ
sþb�v

� �
:

We need further to check whether Qn

2 satisfies the constraint on Q.
It is straightforward that ðsþb�vÞQn

24bF �1ð1�ηÞþðKp�vÞKq, so
we only need to consider the following three cases:

(i) if KqoF �1ðηðsþb�cÞ=ðsþb�vÞÞ, we have

bF �1ð1þFðKqÞ�ηÞþðs�vÞKq�ðsþb�vÞQn

2

¼ bF �1ð1þFðKqÞ�ηÞþðs�KpÞKqþðKp�vÞKq�ðs�vþbÞQn

2

ob F �1ð1þFðKqÞ�ηÞ�F �1 1� ηðc�vÞ
sþb�v

� �� �
þðs�KpÞ

� K�F �1 ηðsþb�cÞ
sþb�v

� �� �
o0:

Thus, bF �1ð1þFðKqÞ�ηÞþðs�vÞKqoðsþb�vÞQn

2, which
implies that the optimal Qn

2 does not lie within this range.
(ii) if

Kq4KM ¼ b
sþb�Kp

F �1 1� ηðc�vÞ
sþb�v

� �
þ ðs�KpÞ
sþb�Kp

F �1

� ηðsþb�cÞ
sþb�v

� �
;

we find Qn

2oKq, which implies that QA ¼ Kq.
(iii) otherwise, QA ¼Qn

2.

Case 3: When bF �1ð1þFðKqÞ�ηÞþðs�vÞKqo ðsþb�vÞQ , the
optimal solution is ξn ¼ ~ξ. Substituting ξn into gðξÞ and taking
derivative with respect to Q, we get

∂gðξÞ
∂Q

¼ 1
η

Z ðξ�ðv� cÞQ þPðKqÞÞ=ðs�vÞ

0
ðv�cÞf ðxÞ dxþ1

η

Z 1

ððs� cþbÞQ �PðKqÞ� ξÞ=b

�ðs�cþbÞf ðxÞ dx:
Combining the above condition with (15) and equating it to zero,
we find that the optimal Qn

3 to the unconstrained version of (16)
satisfies

ðs�vþbÞQn

3 ¼ bF �1 1� ηðc�vÞ
sþb�v

� �
þðs�vÞF �1 ηðsþb�cÞ

sþb�v

� �
:

Similar to Case 2, we can show that the optimal Qn

3 lies within this
range, i.e., QA ¼Qn

3, as KqrF �1ðηðsþb�cÞ=ðsþb�vÞÞ. Further-
more, in this case Qn

3 is always larger than Kq.
Summarizing the above three cases, and combining it with the

case where QoKq analyzed before, we obtain the corresponding
results. □

Proof of Lemma 4.5. We only consider part (i) of this lemma and
other parts can be similarly proved. We divide the proof into two
parts: (a) when Q1oQu, then KMoQ2oQu; (b) when Q2oQu

then, Q1oQu. It is obvious that G(t) is increasing in t, which is a
useful characteristic that we use in the following proof.

(a) When Q1oQu, we find

GðQuÞ ¼ ðsþb�KpÞQu� bF �1 1� ηðc�vÞ
sþb�v

� �
þðs�KpÞF �1

�

� ηðsþb�cÞ
sþb�v

� ��
¼ ðsþb�vÞQu� bF �1 1� ηðc�vÞ

sþb�v

� ��

þðs�KpÞF �1 ηðsþb�cÞ
sþb�v

� �
þðKp�vÞF �1 sþb�c

sþb�v

� ��
¼ ðsþb�vÞðQu�Qn

1ÞZ0

As GðQ2Þ ¼ 0 and G(Q) is increasing in Q, we get Q2rQu.
Moreover, we have

ðsþb�KpÞQ2 ¼ bF �1 1�η
ðKp�vÞFðQ2Þ�ðKp�cÞ

sþb�Kp

� �

þðs�KpÞF �1 η
ðsþb�cÞ�ðKp�vÞFðQn

2Þ
sþb�Kp

� �

ZbF �1 1�η
ðKp�vÞFðQuÞ�ðKp�cÞ

sþb�Kp

� �
þðs�KpÞ

�F �1 η
ðsþb�cÞ�ðKp�vÞFðQuÞ

sþb�Kp

� �

¼ bF �1 1� ηðc�vÞ
sþb�v

� �
þðs�KpÞF �1 ηðsþb�cÞ

sþb�v

� �
¼ KM ;

in which the inequality holds as the left side of the equation is
decreasing in Q.

(b) When Q2oQu, we have GðQuÞ40 as GðQ2Þ ¼ 0 and G(t) is an
increasing function. That is,

GðQuÞ ¼ ðsþb�KpÞQu� bF �1 1� ηðc�vÞ
sþb�v

� �
þðs�KpÞF �1

�

� ηðsþb�cÞ
sþb�v

� ��
40:

Thus, Q1oQu.
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Combining these two parts, we get the part (i) of this lemma. □

Proof of Theorem 4.2. The idea of this part is to derive the
optimal Kn

q, given the optimal Qn established in Theorem 4.1. We
only prove the case where KpZc here; when Kpoc, the proof is
similar and we omit it here. Then the objective is to solve the
following problem:

max
Kq

gðξnÞ; ð17Þ

given the results in Theorem 4.1. We analyze the following three
cases, depending on the ranges of Q, Kq, and the corresponding ξn:

Case 1: When KqZKM , the optimal QA ¼ Kq by Theorem 4.1.
Substituting Q ¼ Kq into gðξÞ and taking derivative with respect to
Kq, we get

∂gðξÞ
∂Kq

¼ �1
η

Z 1

ððs� cþbÞKq �PðKqÞ� ξÞ=b
½�ðs�cþbÞþðKp�vÞFðKqÞ�f ðxÞ dx

�1
η

Z ðξ�ðKp � cÞKq þPðKqÞÞ=ðs�KpÞ

0
½�ðKp�cÞþðKp�vÞFðKqÞ�f ðxÞ dx;

which is equivalent to

η
∂gðξÞ
∂Kq

¼ ððs�cþbÞ�ðKp�vÞFðKqÞÞ 1�F
ðs�cþbÞKq�PðKqÞ�ξ

b

� �� �

þððKp�cÞ�ðKp�vÞFðKqÞÞF
ξ�ðKp�cÞKqþPðKqÞ

s�Kp

� �
:

Combining this with (15), we get

η
∂gðξÞ
∂Kq

¼ �η½ðKp�vÞFðKqÞ�ðsþb�cÞ��ðsþb�KpÞ

�F
ξ�ðKp�cÞKqþPðKqÞ

s�Kp

� �
¼ �η½ðKp�vÞFðKqÞ�ðKp�cÞ�þðsþb�KpÞ�ðsþb�KpÞ

�F
ðs�cþbÞQ�PðKqÞ�ξ

b

� �
:

As Fððξ�ðKp�cÞKqþPðKqÞÞ=ðs�KpÞÞA ½0; η�, for KqrF �1ðKp�c=
Kp�vÞ, gðξÞ is increasing in Kq; and for KqZF �1ððsþb�cÞ=
ðKp�vÞÞ, gðξÞ is decreasing in Kq. So the optimal Kn

q should lie in
½F �1ððKp�cÞ=ðKp�vÞÞ; F �1ððsþb�cÞ=ðKp�vÞÞ� and satisfy

ðsþb�KpÞKq ¼ bF �1 1�η
ðKp�vÞFðKqÞ�ðKp�cÞ

sþb�Kp

� �
þðs�KpÞ

�F �1 η
ðsþb�cÞ�ðKp�vÞFðKqÞ

sþb�Kp

� �
;

which implies that both the optimal order quantity and optimal
hedging quantity are Q2.

Case 2: When KrKqoKM , QA ¼ 1=ðsþb�vÞ½ðKp�vÞKqþðsþ
b�KpÞKM �. Substituting QA into gðξÞ and taking derivative with
respect to Kq, we get

∂gðξÞ
∂Kq

¼ �1
η

Z 1

ððs� cþbÞQ �PðKqÞ� ξÞ=b
½ðKp�vÞFðKqÞ�f ðxÞ dx

�1
η

Z ðξ�ðKp �vÞKq �ðv� cÞQ þPðKqÞÞ=ðs�KpÞ

0
½�ðKp�vÞþðKp�vÞ

�FðKqÞ�f ðxÞ dx;
which is equivalent to

η
∂gðξÞ
∂Kq

¼ ð�ðKp�vÞFðKqÞÞ 1�F
ðs�cþbÞQ�PðKqÞ�ξ

b

� �� �

þððKp�vÞ�ðKp�vÞFðKqÞÞF
ξ�ðKp�vÞKq�ðv�cÞQþPðKqÞ

s�Kp

� �
:

Combining this with (14), we get

F
ξ�ðKp�vÞKq�ðv�cÞQþPðKqÞ

s�Kp

� �
¼ ηFðKqÞ:

Moreover, from Theorem 4.1, we know

F
ξ�ðKp�vÞKq�ðv�cÞQþPðKqÞ

s�Kp

� �
¼ η

sþb�c
sþb�v

;

so we get that the optimal Kn

q satisfies FðKn

qÞ ¼ FðQuÞ, i.e., Kn

q ¼Qu.
Case 3: When KqoK , QA ¼QN , which is independent of Kq.

Substituting QA into gðξÞ and taking derivative with respect to Kq,
we get

∂gðξÞ
∂Kq

¼ �1
η

Z 1

ððs� cþbÞQ �PðKqÞ� ξÞ=b
½ðKp�vÞFðKqÞ�f ðxÞ dx�1

η

Z Kq

0

�ðKp�vÞf ðxÞ dx1
η

Z ðξ�ðKp �vÞKq �ðv� cÞQ þPðKqÞÞ=ðs�KpÞ

0

�½ðKp�vÞFðKqÞ�f ðxÞ dx:

Combining this with (14), we get

∂gðξÞ
∂Kq

¼ � 1�1
η

� �
FðKqÞ40:

Thus, the value function is increasing in Kq and the optimal Kq does
not lie within ½0;K Þ.

Summarizing the above three cases, and with the results of
Lemma 4.5, we obtain the corresponding results. □
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