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W e address an inventory rationing problem in a lost sales make-to-stock (MTS) production system with batch order-
ing and multiple demand classes. Each production order contains a single batch of a fixed lot size and the process-

ing time of each batch is random. Assuming that there is at most one order outstanding at any point in time, we first
address the case with the general production time distribution. We show that the optimal order policy is characterized by
a reorder point and the optimal rationing policy is characterized by time-dependent rationing levels. We then approxi-
mate the production time distribution with a phase-type distribution and show that the optimal policy can be character-
ized by a reorder point and state-dependent rationing levels. Using the Erlang production time distribution, we generalize
the model to a tandem MTS system in which there may be multiple outstanding orders. We introduce a state-transforma-
tion approach to perform the structural analysis and show that both the reorder point and rationing levels are state
dependent. We show the monotonicity of the optimal reorder point and rationing levels for the outstanding orders, and
generate new theoretical and managerial insights from the research findings.
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1. Introduction

Inventory rationing among multiple customer classes
(segments) lies at the heart of the yield management
problem (Deshpande et al. 2003). It is an important
tactic for coordinating demand management and
inventory control in many industries where the ser-
vice level requirements vary widely among demand
classes. For example, Cohen et al. (1988) study service
parts management with priority demand classes in
the computer industry where a retailer could place
either regular orders or emergency orders. Deshpan-
de et al. (2003) provide an example of inventory
rationing in the US military. Another example is Dell
Computer, which segments customers by type (e.g.,
family, industry, government, academic, etc.) and
sells the same product (computers) to different seg-
ments at different prices (McWilliams 2001). Similar
problems also exist in service industries with fixed
and perishable capacity (e.g., airlines, car rentals,
hotels, etc.) where the critical decisions include the

prices charged to demand classes and the rationing
levels (see, e.g., Kimes 1989, Talluri and van Ryzin
2004). Kleijn and Dekker (1999) provide an overview
of the inventory rationing problem and present appli-
cations ranging from airlines to petrochemical firms.
Our study aims to address several salient features

that are commonly observed in the inventory manage-
ment of many production and supply systems. First,
demand is uncertain and can be segmented into multi-
ple classes according to customers’ willingness to pay
and their service level requirements. Second, the pro-
duction and supply processes may consist of multiple
sequential phases with uncertain delivery lead times.
For example, an in-house production system may
have a sequential production process that includes
raw materials processing, work-in-process component
processing, assembly, inspection, and packaging. A
typical supply system of a global firm may consist of
multiple sequential delivery stages including order
processing, multi-phase shipping, and custom clear-
ance. The end customer demand and the time
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required to complete each stage and the whole process
may fluctuate over time. See Zipkin (2000) for more
discussions on sequential supply systems. Third,
replenishment orders are often restricted to fixed
batch sizes (i.e., full truck loads or containers).
In this study we consider an inventory rationing

problem of a continuous review make-to-stock (MTS)
system with batch production and multiple demand
classes. Demands arrive according to Poisson pro-
cesses. Unmet demand is lost and a penalty cost is
incurred. For any incoming customer order, the sys-
tem manager determines whether to satisfy it with
on-hand inventory (if there is any) or reject it. The
demand classes have different values for the same
product, which are represented by class-specific
prices and penalty costs for lost sales (or shortages).
Each production order contains a single batch of a
fixed lot size (e.g., in a full truckload or a full con-
tainer). The production processing time is random.
The objective of the system is to maximize the total
discounted profit over an infinite horizon.
We formulate the problem as a Markov decision

process (MDP). We first address the case where the
production times are generally distributed and there
is at most one outstanding order. We show that the
optimal ordering policy can be characterized by a criti-
cal stock level. That is, the reorder point policy is opti-
mal. The inventory rationing control for each demand
class is characterized by time-dependent critical stock
levels, also called rationing levels. We show that the
rationing levels are decreasing in the elapsed produc-
tion time of the outstanding order. Since it is difficult
to further generalize the structural analysis under gen-
eral production times to the case that allows multiple
outstanding orders, we approximate the production
time distribution with a phase-type distribution and
show that the optimal policy can be characterized by a
reorder point and state-dependent rationing levels.
We then use a tandem MTS system to address the
issue of allowing multiple outstanding orders. Assum-
ing that the production time follows an Erlang distri-
bution, we show that both the reorder point and
inventory rationing levels are state dependent. We
characterize the monotonicity of the optimal reorder
point and rationing levels for the pipeline of outstand-
ing orders and discuss the managerial insights. The
numerical results show that when the batch size is rel-
atively large it may be sufficient to restrict the system
to allow at most one order outstanding.
Our contributions are two twofold. First, we gener-

alize the lost sales inventory rationing models to
batch-ordering systems while allowing multiple
orders outstanding simultaneously. The intrinsic dif-
ficulty in analyzing the lost sales system with multiple
orders outstanding arises from the fact that the deci-
sion maker needs to take into account the status of all

the outstanding orders while making inventory
replenishment and rationing decisions. Second, when
addressing the case with multiple outstanding orders,
we introduce a state-transformation approach to treat
the system as a serial system. This approach enables
us to tackle the multi-outstanding-order problem and
provide new insights into the inventory rationing
problem. We show that when an order is placed, the
subsequent reorder point decreases, but will increase
in the time since the order was placed. This has the
effect of decreasing the likelihood of placing a second
order until such time when the first order is more
likely to arrive. Conversely, we show that the ration-
ing levels decrease in the time since the order was
placed. This implies that when an order is placed,
little changes in the rationing policy, but as the order
arrival approaches, the rationing levels fall to ensure
that excess inventory is removed prior to the arrival
of the order. To the best of our knowledge, these
structural results are shown for the first time for batch
production inventory rationing problems.
The remainder of this article is organized as fol-

lows. Section 2 reviews the related literature. Section
3 addresses the case with general production times
and a single outstanding order and approximates the
general production time distributions with phase-
type distributions. Section 3 generalizes the analysis
to the case with multiple outstanding orders. Section
5 provides the concluding remarks. All the proofs are
placed in Appendix S1.

2. Related Literature

This study follows the growing literature on the inven-
tory rationing problem initiated by Veinott (1965). See
Ding et al. (2006), Arslan et al. (2007), M€ollering and
Thonemann (2008), Fadiloglu and Bulut (2010), and
Cheng et al. (2011) for comprehensive reviews of
recent developments. Our study fits into the stream of
continuous-review MTS models with lost sales. The
most related works in this literature are Ha (1997,
2000), Melchiors et al. (2000), and Melchiors (2001).
Ha (1997) considers a MTS production system with

several demand classes and lost sales. He shows that
the critical-level policy is optimal. Ha (2000) extends
Ha (1997) to the case with Erlang distributed produc-
tion times. Assuming that each production order con-
tains a unit of product and there is only one
outstanding order at any point in time, Ha (2000)
finds that by combining the two state variables—
inventory level and status of the outstanding order—
into a single dimensional state, called work storage, the
structural results can be readily obtained by
backward induction. His results give some insights
into the inventory rationing problem by incorporating
production status information into the inventory
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allocation decision, but application of his model is rel-
atively limited due to the restrictive assumptions of
unit production and single outstanding order. He
points out that one direction important future
research is to address the general production time dis-
tributions. Our study not only address his concern on
the general production time distribution but also fur-
ther generalizes the model to allow batch production.
Note that his approach of work storage state variable
aggregation no longer works in our model. Moreover,
with Erlang distribution lead times, we allow multi-
ple orders outstanding simultaneously.
Melchiors et al. (2000) consider an (Q, R) inventory

system with lost sales and two priority demand clas-
ses, under the assumptions of unit Poisson demand,
deterministic constant lead times, and at most one
order outstanding. They introduce a lead time–inde-
pendent critical-level policy, derive the exact formula-
tion of the average cost, and propose a simple
optimization procedure. Melchiors (2001) extends the
model of Melchiors et al. (2000) to multiple demand
classes with generally distributed replenishment lead
times. He analyzes the rationing policy for an (R, Q)
system with exogenously given reorder point R and
order size Q, where R < Q. He shows that the optimal
rationing policy can be characterized by time-depen-
dent critical stock levels. Note that the restriction
R < Q implies that there is at most one order out-
standing at any point in time. For the case of constant
lead times, he shows that the optimal critical levels
are a decreasing function of the elapsed lead time of
the outstanding order. He does not analyze the opti-
mality of the reorder point policy or the (R, Q) policy.
In this study we also consider a batch production sys-
tem with an exogenously given batch size. However,
our model differs from Melchiors (2001) in that the
reorder policy is endogenously determined, although
it turns out that the optimal production policy can be
characterized by a critical reorder point when there is
at most one order outstanding at any point in time.
Note that the single-outstanding-order assumption
does not imply R < Q. Nevertheless, when the pro-
duction times are approximated by a phase-type dis-
tribution, we are able to generalize the model with a
single outstanding order to the case with multiple
outstanding orders and show that the state-depen-
dent reorder point policy is optimal.
When there is only one demand class, the inventory

rationing model of the (Q, R) system reduces to the
traditional (Q, R) model (see, e.g., Hadley and Whitin
1963). For tractability, it is often assumed that there is
at most one order outstanding (see, e.g., Buchanan
and Love 1985, Hill and Johansen 2004, Nahmias and
Demmy 1981). Johansen and Thorstenson (2004)
attempt to generalize the lost sales (Q,R) model to the
case where more than one order may be outstanding.

Assuming that orders do not cross over time, they
obtain the equilibrium equations for the underlying
MDP and develop a computational algorithm. Differ-
ent from them, we focus on characterizing the optimal
policy structure for an inventory rationing problem
with a fixed order batch size, assuming the produc-
tion times follow an Erlang distribution and allowing
multiple outstanding orders.
Also related is the joint pricing and inventory con-

trol literature, see, e.g., Elmaghraby and Keskinocak
(2003) and Chen and Simchi-Levi (2012) for compre-
hensive reviews. Both pricing and rationing are typi-
cal marketing instruments for demand management.
Chen et al. (2006, 2009) address the joint pricing and
production control problem for the unit and batch
(exponential) production system, respectively. Pang
and Chen (2010) generalize Chen et al. (2009) to the
case with Erlangian lead times and two outstanding
orders. But their analysis cannot be readily extended
to the more general case that allows any number of
outstanding orders. We address the multiple out-
standing orders issue. Employing a state-transforma-
tion approach, we are able to characterize the
structural properties of the optimal policies.

3. Single Outstanding Order

3.1. The Model with General Production Times
Consider a single-facility MTS production system that
offers a single product to N demand classes (subscript
i 2 N � f1; � � � ;Ng) over an infinite horizon.
Demands from different classes arrive according to
independent Poisson processes with an arrival rate ki
for class i customers. When a customer from class i
arrives to the system and requests a unit of the prod-
uct, the system manager must decide whether to
accept or reject the demand request. If the request is
accepted, then the customer pays a fixed price of pi per
unit of the product. If it is rejected, then the demand is
lost and a lost sales cost, pi, is incurred. The lost sales
cost can be interpreted as a direct rebate that the sys-
tem pays to a customer for not satisfying their demand
or a loss of goodwill. It can also represent the loss due
to spot purchase, which is equal to the spot price less
the sales price. If a class i customer arrives when the
system is out of stock, then the demand is lost and the
lost sale cost pi is incurred. That is, the demand classes
are differentiated by the prices paid for the product
and the lost sales costs. We assume that

p1 þ p1 [ � � � [ pN þ pN:

The product is produced in batches with a fixed lot
size Q, an exogenously given positive integer (e.g., a
truck load or a full container). This treatment with a
(exogenously given) fixed ordering lot size is common
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in the literature (see, e.g., Chen 2000, Song 2000). The
production of each batch incurs a fixed cost, Cf > 0,
and a variable cost c per unit. The fixed cost includes
administrative costs, transportation costs, and fixed
payments to the supplier. So the total cost of each pro-
duction order is C = Cf + c�Q. We assume that the
payment occurs when an order is completed.
The production processing time of each batch, s, is

assumed to be generally distributed with probability
density function f and distribution function F. Deter-
ministic production time can be seen as a special case.
When s is a positive random variable, we assume that
the failure rate function qðsÞ ¼ fðsÞ

1�FðsÞ is strictly
increasing. Note that the family of increasing failure
rate distributions includes the uniform, exponential,
Erlang, normal, truncated normal distributions, etc.
(Porteus 2002). The rationale behind this assumption
is that as time goes by the outstanding production
order will be more likely to arrive. Zipkin (1986) pro-
vides a detailed discussion of stochastic lead times in
inventory models.
In this section, we assume that at any point in time

there is at most one batch being processed in the facil-
ity. This assumption ensures that at the time before an
order is placed, the inventory position and the net
inventory level coincide. Although this assumption is
rather restrictive, it provides mathematical tractability
while preserving the major characteristics of batch
production systems. We refer to Hadley and Whitin
(1963), Nahmias and Demmy (1981), and Berk and
G€urler (2008) for a similar treatment in the analysis of
lost sales (Q, R) inventory systems.
The system state is described by a two-dimensional

state variable (X(t), S(t)),whereXðtÞ 2 Zþ is the inven-
tory level at time t and S(t) is the elapsed processing
time of the outstanding order (if there is any). In other
words, S(t) records the age of the outstanding order. If
there is no outstanding order or an outstanding order is
completed at time t, then S(t) = 0. At any time t, when
the current state is (x, s), a joint decision needs to be
made on production and inventory allocation. In par-
ticular, when there is no ongoing production (s = 0),
the system manager needs to decide both whether to
place a production order and whether to accept an

incoming demand order. When there is an order out-
standing (s > 0), the manager needs only to determine
whether to accept an incomingdemandorder.
Different from the system where the transition time

between each two consecutive inventory states is

exponentially distributed (see, e.g., Ha 2000), the tran-
sitions of inventory states in our model are not time
memoryless since the transitions depend on the
elapsed time (or age) of the outstanding order (if there
is any). Let U be the set of admissible policies. A pol-
icy u 2 U can be specified as u(t) = {u0(X(t),S
(t)),u1(X(t),S(t)),⋯,uN(X(t),S(t))}, where u0(x,0) = 0, if
there is no order outstanding and no new order is
placed, u0(x,0) = 1, if there is no order outstanding
and a new order is placed, un(x,s) = 1, if an incoming
customer order of class n is accepted, and un(x,s) = 0,
if an incoming customer order of class n is rejected.
Let Du

nðtÞ denote the accumulated sales from class n
customers, LunðtÞ the accumulated lost sales to class n
customers, and Pu(t) the number of batches produced
(received) up to t under the policy u. Then, we have

XuðtÞ ¼ Xð0Þ þ QPuðtÞ � PN
n¼1 D

u
nðtÞ.

The objective of the system is to find the optimal
control policy u* that maximizes the expected dis-
counted profit over an infinite horizon:

Ju
�

c ðx; sÞ ¼max
u2U

Et

Z 1

0

e�ct
XN
n¼1

pndD
u
nðtÞ�CdPuðtÞ

 "

�
XN
n¼1

pndL
u
nðtÞ� hXuðtÞdt

!#
;

ð1Þ

where c > 0 is the discount factor, (x,s) is the initial
state, and Et½�� ¼ E½�jðXð0Þ; Sð0ÞÞ ¼ ðx; sÞ�. For conve-
nience, we let J ¼ Ju

�
c .

Let D be a positive small interval and K ¼ PN
n¼1 �n.

Given any state (x,s), s > 0, the first-order probability
that the production will be completed in time (s,

s + D) is fðsÞ
1�FðsÞD. The probability that a customer of

class n arrives in (s,s + D) is knD. Assume that D is suf-
ficiently small such that (c + Λ + q(s))D < 1 for all
s ≥ 0.
By Bellman’s principle, we have

Jðx; sÞ ¼ TJðx; sÞ; ð2Þ

where the operator T is defined on functions
v : Zþ � Rþ ! R such that

~Tvðx; 0Þ ¼
XN
n¼1

�nDTnvðx; 0Þ þ ð1� cD� KDÞvðx; 0Þ;

ð4Þ

Tvðx; sÞ ¼ �hxDþ max T̂vðx; 0Þ; ~Tvðx; 0Þ
n o

þ oðDÞ; if s = 0

T̂vðx; sÞ þ oðDÞ; if s[ 0

(
; ð3Þ
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Tnvðx;sÞ¼maxfpnþvðx�1;sÞ;vðx;sÞ�png1fx[0g
þ ½vðx;sÞ�pn�1fx¼0g:

ð6Þ

Note that the operator T̂ corresponds to the ordering
decision and ~T corresponds to the decision of plac-
ing no order. Given a state (x,0), it is optimal to
place an order if T̂Jðx; 0Þ [ ~TJðx; 0Þ. The operator Tn

is associated with the admission control of whether
to accept or reject orders from customers of class n.
For any state (x, s), the optimal demand rate from
demand class n is defined as

�nðx; sÞ � �n1fDJðx;sÞ\pnþpng; ð7Þ

where the operator D of a function v(x,i) is defined
as

Dvðx; sÞ ¼ vðx; sÞ � vðx� 1; sÞ and
D2vðx; sÞ ¼ Dvðx; sÞ �Dvðx� 1; sÞ:

Here, Dv(x, s) measures the marginal loss of reduc-
ing one unit of inventory in state (x, s). We call it
the marginal value or shadow price of the inventory.
Re-arranging the terms, dividing both sides by D,

and letting D ? 0 yields the HJB equations: If s = 0,

and if s > 0,

0 ¼ �hxþ @Jðx; sÞ
@s

þ qðsÞ½JðxþQ; 0Þ � Jðx; sÞ � C�

þ
XN
n¼1

�n½TnJðx; sÞ � Jðx; sÞ� � cJðx; sÞ; ð9Þ

where @Jðx;0Þ
@s ¼ limD!0þ

Jðx;DÞ�Jðx;0Þ
D . Note that as s = 0,

a production order is placed if

@Jðx; 0Þ
@s

þ qð0Þ½JðxþQ; 0Þ � Jðx; 0Þ � C�[ 0:

This is consistent with its first-order approximation
(2) because

lim
D!0

T̂Jðx; 0Þ � ~TJðx; 0Þ
D

¼ @Jðx; 0Þ
@s

þ qð0Þ½JðxþQ; 0Þ
� Jðx; 0Þ � C�:

3.2. Structure of the Optimal Policy
It is difficult to analyze the solutions of differential
equation systems (8) and (9) directly. In the following
analysis we perform backward induction on the first-
order approximate optimality equation (2). For conve-
nience, we omit the notation o(D) in the analysis.
We first define a set of structural functions. Let V be

the set of functions defined on Zþ � Rþ such that for
any v 2 V;D [ 0; and s ≥ 0,

(C1) Dv(x + Q,0) ≤ Dv(x,s) and Dv(x,s + D)
≤ Dv(x,s).

(C2) Dv(x,s) < p1 + p1.
(C3) limx!1 Dvðx; sÞ ¼ � h

c :

These properties partially characterize the struc-
tural properties of the optimal value function. The
first inequality (C1) implies that the opportunity cost
of each outstanding batch order v(x + Q,0) � v(x,s) is
decreasing in the inventory level x for any s ≥ 0. This
property is also called Q-difference decreasing (Huh

T̂vðx; sÞ ¼qðsÞD½vð¼ xþQ; 0Þ � C�

þ 1� qðsÞDð Þ
XN
n¼1

�nDTnvðx; sþ DÞ þ ð1� cD� KDÞvðx; sþ DÞ
" #

þ oðDÞ;

¼qðsÞD½vðxþQ; 0Þ � vðx; sþ DÞ � C� þ
XN
n¼1

�nDTnvðx; sþ DÞ þ ð1� cD� KDÞvðx; sþ DÞ
" #

þ oðDÞ;

ð5Þ

0 ¼� hxþmax
XN
n¼1

�n½TnJðx; 0Þ � Jðx; 0Þ� � cJðx; 0Þ;
(

@Jðx; 0Þ
@s

þ qð0Þ½JðxþQ; 0Þ � Jðx; 0Þ � C� þ
XN
n¼1

�n½TnJðx; 0Þ � Jðx; 0Þ� � cJðx; 0Þ
)

¼� hxþmax
@Jðx; 0Þ

@s
þ qð0Þ½JðxþQ; 0Þ � Jðx; 0Þ � C�; 0

� �

þ
XN
n¼1

�n½TnJðx; 0Þ � Jðx; 0Þ� � cJðx; 0Þ;

ð8Þ
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and Janakiraman 2012). The second inequality (C1)
states that the marginal value of inventory on hand is
decreasing in the age of the outstanding order, which
implies that @Dvðx;sÞ

@s � 0. As we will show below, these
two properties allow us to characterize the structure
of the optimal production control policy. Property
(C2) states that the marginal value of inventory is
always smaller than the benefit of accepting a cus-
tomer order of the highest priority class 1, which
implies that the customer orders of the highest prior-
ity class are always accepted. Property (C3) shows the
limiting behaviour of the marginal value of inventory
when the inventory level is sufficiently high. This
property and the first inequality (C1) together provide
a lower bound on the marginal value of inventory.

LEMMA 1. J 2 V.

Lemma 1 employs the backward induction
approach on the Bellman equation to establish some
structural properties of the optimal profit function. To
completely characterize the structure of the joint pro-
duction control and inventory rationing policy
requires the concavity property with respect to the
inventory level. We are not able to prove concavity
via the backward induction approach. Fortunately,
we find that concavity can be proved by using the
properties of Lemma 2 and manipulating the HJB
equations (8) and (9).

LEMMA 2. For any s ≥ 0, J(x,s) is concave in x, i.e.,
D2J(x,s) ≤ 0 for all x ≥ 2.

We now characterize the structure of the optimal
policy

THEOREM 1.

(a) The optimal production control policy is character-
ized by a critical stock level (reorder point):

R ¼ min x 2 Zþ :
@Jðx; 0Þ

@s

�
þqð0Þ½JðxþQ; 0Þ � Jðx; 0Þ � C� � 0g � 1;

at or below which it is optimal to place an order (of a
batch of size Q) if there is no outstanding order (i = 0);
otherwise, it is optimal to place no order. Moreover,
R < ∞.

(b) The optimal rationing policy can be characterized
by the time-dependent critical levels:

KnðsÞ ¼ maxfx 2 Zþ : DJðx; sÞ	 pn þ png; s	 0; n
¼ 1; � � � ;N � 1;

such that for any s, it is optimal to satisfy a class n
demand if the inventory level is above or equal to Kn(s)

and reject it otherwise. Moreover, the time-dependent
critical levels satisfy

0 ¼ K1ðsÞ�K2ðsÞ� � � � �KN�1ðsÞ;

and

Knðsþ DÞ�KnðsÞ; 8D	 0; n ¼ 1; � � � ;N � 1:

In Theorem 1, part (a) shows that the optimal batch
production control policy is of the critical-level type.
Thus, the reorder point policy is optimal.
Part (b) states that for any class n demand, the opti-

mal rationing policy is characterized by the time-
dependent critical level Kn(s) when s units of time
have elapsed. If the inventory level is below or at
Kn(s), the marginal value of inventory exceeds the
penalty cost plus the lost sales revenue due to reject-
ing the customer order. In other words, when the
inventory level is low, it is more beneficial to reserve
inventory in anticipation of future demands from
higher priority classes. When the inventory level is
high, it is more beneficial to accept more orders from
lower priority demand classes so as to increase the
total revenue and reduce the inventory holding cost.
In particular, the marginal value of inventory is
always less than p1 + p1, which implies that it is
always optimal to accept class 1 customer orders, i.e.,
K1(s) = 0.
For any s, Kn(s) is increasing in n. This nested

threshold structure implies that the higher the inven-
tory level is, the more demands from lower priority
classes will be accepted. For any n, Kn(s) is decreasing
in s, which follows from property (C1). The rationale
behind the time-monotone structure is as follows:
When making an inventory allocation (rationing)
decision, the manager needs to take into account not
only the inventory position (= on-hand inventory +
inventory being processed) but also the status of pro-
duction. As time goes by, the outstanding order gets
closer to completion, so the opportunity cost of on-
hand inventory becomes lower (due to the incoming
production order). Thus, given the same inventory
position, the state with a production order closer to
completion tends to accept more lower priority cus-
tomer orders.
The threshold type of policy structure character-

ized by Theorem 2 is very intuitive and easy to
implement. It is in line with that of Ha (2000) for
systems with unit production and Erlangian pro-
duction times. However, it is worth mentioning that
the analysis of the batch production system is tech-
nically more challenging because Ha’s approach of
aggregating the two-dimensional state space into a
one-dimensional state space no longer works in our
model. In addition, the system with a batch-order-
ing restriction normally does not have the concavity
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property (see Huh and Janakiraman 2012). Without
the concavity property, the rationing control policy
may not be of the threshold type. Hence, this nice
property is a surprise to us and it allows us to
have a complete characterization of the rationing
policy.
Our analysis benefits from the assumptions of Pois-

son demand, lost sales, and a single outstanding
order. In particular, when allowing multiple out-
standing orders, with generally distributed lead
times, the model becomes intractable since there may
be an infinite number of outstanding orders at any
point in time. In the following analysis, we first use a
phase method to approximate the production times
and then extend the structural analysis to the case that
allows multiple outstanding orders.

3.3. Approximation with Phase-Type Distributions
The exact computation of the above model with
general production time distribution, although pos-
sible, is not easy, as it involves solving a differential
equation system. It is known that it is possible to
approximate any distribution on non-negative real
numbers by a phase-type (PH) distribution to any
degree of accuracy (Tijms 1994). Using the PH dis-
tribution to approximate the general distribution is
also called the method of phases in queueing theory.
This method is often used in inventory theory to
model stochastic lead times (Zipkin 1988, 2001). A
typical class of PH distributions is the mixed-Erlang
distribution. Many distributions, such as the expo-
nential distribution, Erlang distribution, and hyper-
exponential distribution, are special cases of the
mixed-Erlang distribution. Therefore, we can use the
mixed-Erlang distributed processing times to
approximate general stochastic lead times. The
advantage of using the mixed-Erlang distribution is
that the duration of each delivery phase is exponen-
tial. Since the demand processes are Poisson pro-
cesses, the system is memoryless when it is between
two delivery phases or two consecutive demand
arrivals, which enables us to easily work on the
Markovian discrete event system and compute the
optimal policies.
Approximating the production time distribution

using the mixed-Erlang distribution is natural for sys-
tems with the following operational characteristics:
The production process consists of multiple process-
ing steps. The duration of each step is approximately
exponentially distributed, and the number of steps to
finish the production of each batch is random. Then,
each Erlangian phase corresponds to a production
step, and the completion of each phase corresponds to
the completion of each production step. See Ha (2000)
for detailed justifications for using phases to represent
partially completed production.

In the following analysis, we assume that the pro-
duction times follow the following distribution:

F ¼
Xk
m¼1

xmErðm; bÞ;

where k is a positive integer,
Pk

m¼1 xm ¼ 1, and Er(m,b)
is an Erlang distribution with m phases and each
phase is exponentially distributed with a mean 1/b.
In particular, when xk=1, the production times follow
a k-phase Erlang distribution, which can approximate
deterministic production times when k is sufficiently
large. Given the number of completed phases i, the
residual production time satisfies the distribution

FðiÞ ¼ Pk
m¼iþ1

xmPm

j¼iþ1
xj

Erðm � i; bÞ, i = 1, …, k � 1.

Tijms (1994) demonstrates how to approximate a
general distribution using the mixed-Erlang distribu-
tion. For example, when 0 ≤ cs ≤ 1, where cs is the
coefficient of variation in the production time s, the
distribution of s can be approximated by a mixture
of two Erlang distributions with k and k � 1 phases
with probabilities x and 1 � x, respectively, and
the same rate b such that 1=k � c2s � 1=ðk � 1Þ. By
matching the means and coefficients of variation
of the distribution of s and the approximate mixed-
Erlang distribution, Tijms (1994) shows that the
parameters of the mixed-Erlang distribution can be
estimated as

x¼ 1

1þ c2s
½kc2s � ðkð1þ c2sÞ � k2c2sÞ1=2�; b¼ k�x

E½s� : ð10Þ

We refer to Tijms (1994) for more detailed discus-
sions on how to approximate general distribution
with phase-type distributions.
With mixed Erlangian processing times, the state of

the system can be represented by ðx; iÞ 2 Zþ � Zþ,
where x refers to the inventory level and i represents
the number of completed phases. In particular, i = 0
refers to the production status that there is no
ongoing production. If a production order is placed,
then it will be completed in the next phase with
probability /ð1Þ ¼ x1Pk

m¼1
xm

and for any i ≥ 0,

/ði þ 1Þ ¼ xiþ1Pk

m¼iþ1
xm

. We assume that /(i) is increas-

ing in i ≥ 1 and /(k) = 1. This assumption implies
that, as time goes by, the probability that the ongoing
production will be completed in the next phase
increases and converges to 1 as the number of elapsed
phases approaches k.
The phase-type distribution approximation allows

us to formulate the problem as a typical Markov
decision problem. Re-scale the time unit so that
c + Λ + b = 1, where K ¼ PN

n¼1 �n. Let J be the
expected discounted profit function given an (Q,R)
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policy. It satisfies the following optimality equa-
tion:

Jðx; iÞ ¼ TJðx; iÞ; ð11Þ
where the operator T is defined on functions
v : Zþ � Zþ ! R such that

Note that J(x,k) = J(x + Q,0). If we do not re-scale
the time unit, the equation (11) should be replaced by

Jðx; iÞ ¼ 1
cþKþbTJðx; iÞ.

The following theorem shows that the approximate
model has a similar optimal policy structure as that of
the model with general production time distribution.

THEOREM 2.

(a) The optimal production policy is characterized by a
critical level:

R ¼ min
x

fx 2 Zþ : /ð1Þ½vðxþQ; 0Þ � C�
þð1� /ð1ÞÞvðx; 1Þ � vðx; 0Þ� 0g � 1;

at or below which it is optimal to place an order (of a
batch of size Q) if there is no ongoing production (i = 0);
otherwise, it is optimal to place no order.

(b) The optimal rationing policy is characterized by
the state-dependent critical levels:

KnðiÞ ¼ maxfx 2 Zþ : DJðx; iÞ	 pn þ png;
i ¼ 1; � � � ; k� 1; and n ¼ 1; � � � ;N � 1;

such that for any delivery state i, it is optimal to satisfy
a class n demand if the inventory level is at or above
Kn(j) and reject otherwise. Moreover, the state-dependent
rationing levels satisfy

0 ¼ K1ðiÞ�K2ðiÞ� � � � �KNðiÞ; i ¼ 0; 1; . . .; k� 1;

and

Knð0Þ	Knð1Þ	 � � � 	Knðk� 1Þ; n 2 N :

The optimal policies and the resulting expected
profits for both the exact model and the approximate
model can be computed using the standard value iter-
ation approach (see, e.g., Puterman 1994). More spe-
cifically, the computation is started from a system
with a truncated state space by limiting the maximum

inventory level. We first initialize the value function
by assigning zeros to all the states. We then conduct
value iterations according to the optimality equation.
The iteration is terminated only when a pre-set level
of accuracy is achieved. The size of the state space is
enlarged gradually until the profit is no longer sensi-

tive to any increase in the state space. Our results can
also be easily extended to the long-run average profit
setting by letting the discount rate go to zero. See, e.g.,
Ha (2000) and Benjaafar and ElHafsi (2006) for more
detailed discussions. Using the value iteration
approach, we can also compute the optimal policies
and relative value functions under the long-run aver-
age profit criterion.
We next provide an illustrative numerical example

to show how to approximate a general distribution
with a mixed-Erlang distribution.

EXAMPLE 1 (APPROXIMATING GAMMA DISTRIBUTION). Sup-
pose that the production time s satisfies a Gamma dis-
tribution with shape parameter j and rate l, with

j > 1. Then, E[s] = j/b and c2s ¼ 1=j. Note that when
j is a positive integer, the Gamma distribution reduces
to an Erlang distribution. The production time distri-
bution can be approximated by F = xEr(k � 1,
b)+(1 � x)Er(k,b), where k = ⌈j⌉, and x and b can be
computed according to 10. The completion time of
each phase is approximated by equalling the expected
residual time of the mixed-Erlang distribution after
each phase. That is, the completion time ti is obtained

from the equation E½sjs 	 ti� ¼ k�i�x
b for phase

i = 1, …, k � 1 and E½sjs 	 tk�1� ¼ 1
b for phase k � 1.

Let j = 6.5 and l = 10. Then, the parameters for the
mixed-Erlang approximation are k = 7, x = 0.30, and
b = 10.31. The probability density functions of the
Gamma distribution and its approximation are shown
in Figure 1, which shows that the two density func-
tions closely match each other. The other parameters
are c = 0.01, Q = 10, C = 10 + 5Q, h = 1, p =
(10, 8, 5), p = (5, 2, 0), and k = (5, 10, 30). The com-
pletion times of phases i = 1, …, k � 1 are
0.1, 0.2, 0.32, 0.51, 1.01, 1.46, respectively. We then
compute the optimal policies for both systems. To
limit the search space, the inventory level is truncated
at 200, and the production time is truncated at 1.72

Tvðx; iÞ ¼ �hxþ bT0vðx; iÞ þ
XN
n¼1

�nTnvðx; iÞ;

T0vðx; iÞ ¼
maxf/ð1Þ½vðxþQ; 0Þ � C� þ ð1� /ð1ÞÞvðx; 1Þ; vðx; 0Þg if i = 0

/ðiþ 1Þ½vðxþQ; 0Þ � C� þ ð1� /ðiþ 1ÞÞvðx; iþ 1Þ; if [ 1,

�
Tnvðx; iÞ ¼ 1fx[ 0g maxfpn þ vðx� 1; iÞ;�pn þ vðx; iÞg þ 1fx¼0g½�pn þ vðx; iÞ�:
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(such that Pr(s ≤ 1.72) < 0.999). The reorder points are
both 15. The optimal rationing policies of the systems
with the Gamma distribution and its mixed-Erlang
approximation are shown in Figure 2, in which the
stepwise dash lines of the approximated rationing lev-
els are constructed from the optimal rationing levels
of the systemwith the mixed-Erlang distribution, such
that the rationing levels for classes 2 and 3 are
K2(⋯) = (4, 4, 3, 2, 2, 1, 0) and K3(⋯) = (25, 18, 17,
17, 16, 16, 16), respectively. It appears that the
approximate rationing levels are slightly higher than
the corresponding optimal rationing levels under the
Gamma distribution. Finally, comparing the total dis-
counted profits under the optimal policy and the pol-
icy derived from the mixed-Erlang approximation for
the system with the Gamma distribution, the average
percentage loss of the latter for all the initial states is

0.71%. When the system starts with the state (0,0), the
profits are 372.31 and 366.09, respectively, resulting in
a percentage loss of 1.67%.

4. Multiple Outstanding Orders:
A Tandem MTS System

The preceding analysis relies on the assumption that
there is at most one order outstanding at any point in
time, i.e., no new order is issued if there is an order in
the outstanding order pipeline. We relax this assump-
tion in this section by considering a k-stage serial
inventory system, in which there may exist multiple
outstanding orders at the same time. The stages are
indexed by j = 0, 1, …, k � 1. The lowest stage stor-
ing the on-hand inventory is represented by stage 0,
stage j + 1 ships all its inventory to stage j,
j = 0, 1, …, k � 2, and stage k � 1 places batch
orders from an outside supplier with infinite supply.
We assume that the duration of each phase is

exponentially distributed with a mean 1/l, which
implies that the production time of each order fol-
lows a k-Erlang distribution with a mean k/l. Due to
the memoryless property of the exponential distribu-
tion, the orders placed at different times may pile up
at some stage. To approximate the exogenous
sequential supply system where the replenishment
orders do not cross overtime (Zipkin 2000, § 7.4), we
assume that all the orders in the same stage, once
piled up together, will move simultaneously to the
subsequent stage. In other words, an order may be
delivered simultaneously with the other orders
placed earlier. This is a common treatment in the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Production time s

PDF of Gamma(6.5,10)
PDF of mixed−Erlang approximation

Figure 1 Probability Density Functions with Gamma Distribution and
Its Mixed-Erlang Approximation

0 0.1 0.2 0.32 0.51 1.01 1.46
0

5

10

15

20

25

Production time s

In
ve

nt
or

y 
le

ve
l

Mixed−Erlang approximation of K
3
(s)

Rationing level of class 2: K
2
(s)

Rationing level of class 3: K
3
(s)

Mixed−Erlang approximation of K
2
(s)

Figure 2 Optimal Rationing Policies with Gamma Distribution and Its Mixed-Erlang Approximation

Pang, Shen, and Cheng: Inventory Rationing with Batch Production
Production and Operations Management 23(7), pp. 1243–1257, © 2014 Production and Operations Management Society 1251



literature (see, e.g., Johansen 2005, Kaplan 1970, Zip-
kin 2008).
Let (x, q1, …, qk�1) denote the state of the system,

where x is the on-hand inventory level and qi repre-
sents the size of the outstanding order at stage i,
i = 1, …, k � 1. Note that x is a non-negative integer
and qi is a non-negative integer multiple of Q. Similar
to the multi-echelon inventory models (see, e.g., Pang
et al. 2012), we can transform the state variable by a
vector y = (y0,y1, …, yk�1) such that y0 = x,
yi ¼ xþPi

j¼1 qj; i ¼ 1; . . .; k � 1. Let Y be the corre-
sponding state space and V(y) be the maximum
value-to-go function. Uniformizing the underlying
MDP with b = Λ + kl and scaling the parameters
such that c + b = 1, the optimality equation can be
expressed as

VðyÞ ¼ TVðyÞ; ð12Þ
where the operator T is defined on any real function
v : Y ! R such that

Here, the operators Hi addresses the order ship-
ments from stage i to stage i � 1, i = 1, …, k � 1, and
Hk addresses the ordering decisions at stage k � 1
(i.e., shipments from the outside supplier or stage k).
For convenience, we define DeV(y) = V(y) �V(y � e)
and DiV(y) = V(y) � V(y � Qei), where ei is the k-
dimensional unit vector with the i-th component
being 1, i = 0, 1, …, k � 1, and e ¼ Pk�1

i¼0 ei.
Let s = (s1,⋯,sk�1), where sj = q1 + … + qj represents

the partial sum of the sizes of the outstanding orders
(in batches) from stage 1 to stage j, j = 1,⋯,k � 1.
Then, y = (x,x + s1,…,x + sk�1). The following theorem
characterizes the structure of the optimal policy.

THEOREM 3.

(a) The optimal inventory replenishment policy is
characterized by a state-dependent reorder point:

R̂ðsÞ ¼ min
x

fDk�1Vðx; xþ s1; . . .; xþ sk�1

þQek�1Þ� 0g � 1;

i.e., when the production status is s and the inventory
level is below or at R̂ðsÞ, reorder a batch of size Q; other-
wise, it is optimal not to place any order. In addition,

R̂ðsÞ is increasing in si, i = 1, …, k � 2, and decreasing
in sk�1.

(b) The optimal rationing control policy can be charac-
terized by state-dependent rationing threshold
levels:

K̂nðsÞ ¼ minfx 2 Zþ
: DeVðx; xþ s1; . . .; xþ sk�1Þ� pn þ png;

n ¼ 1; � � � ;N;

such that for any s, if x 	 K̂nðsÞ, then accept the cus-
tomer order of class n; otherwise, reject the customer
order of class n. In addition, K̂nðsÞ is decreasing in s and
n. In particular, K̂1ðsÞ ¼ 0.

This theorem characterizes the structure of the joint
production and inventory rationing policy when there
may be multiple orders outstanding at the same time.
Note that compared with state y, y + Qek�1 has one
more batch in the last stage and in the total number of
outstanding orders. For i < k � 1, compared with y,

y + Qei has one more batch in stage i, but has one less
batch in stage i + 1, with the total number of out-
standing orders being the same, which implies that in
state y + Qei the outstanding orders are closer to their
receivers. Part (a) shows that the optimal production
control is characterized by a state-dependent reorder
point (in terms of inventory level). The optimal reor-
der point depends on the status of the production
order pipeline, which is different from that derived
under the assumption of at most one order outstand-
ing where the optimal reorder point is independent of
the delivery status. Note that given the total number
of outstanding orders sk�1 ¼ Pk�1

l¼1 ql (which implies
that the system inventory position is x + sk�1), an
increase in qi, i = 1, …, k � 2 implies that the (i + 1)-th
outstanding order is one phase closer to its receiver
(while all else being equal). Then, the property that
the reorder point R̂ðsÞ is increasing in si,
i = 1, …, k � 2 implies that, given the same inventory
position x + sk�1, as the outstanding orders are closer
to the final stage, it is more likely to place a new order.
The property that R̂ðsÞ is decreasing in sk�1 implies
that, given the same inventory position x + sk�1, as
the inventory position increases, it is less likely to
place a new order.

TvðyÞ ¼ �hxþ
XN
n¼1

�nTnvðyÞ þ l
Xk
i¼1

HivðyÞ;

TnvðyÞ ¼ maxfpn þ vðy� eÞ;�pn þ vðyÞg1fy0 [ 0g þ ½�pn þ vðyÞ�1fy0¼0g; n ¼ 1; . . .;N;

H1vðyÞ ¼ vðy1; y1; y2; . . .; yk�1Þ � ðy1 � y0ÞC=Q;

HivðyÞ ¼ vðy0; y1; . . .; yi�2; yi; yi; yiþ1; . . .; yk�1Þ; i ¼ 2; . . .; k� 1;

HkvðyÞ ¼ maxfvðy0; y1; . . .; yk�2; yk�1 þQÞ; vðy0; y1; . . .; yk�2; yk�1Þg:
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Part (b) shows that the optimal rationing policy can
be characterized by the state-dependent critical stock
levels. The monotonicity of K̂n in n implies that the
higher the inventory level is, the more the lower pri-
ority customer orders will be rejected. The monotonic-
ity of K̂n in q implies that the more production orders
are outstanding or the closer the outstanding orders
are to the final stage, it is more likely to accept more
customer orders.
We now translate the optimal policy structure back

into the production status in terms of (i1, …, ik�1). Let
R(q1, …, qk�1) and Kn(q1, …, qk�1) be the respective
production and inventory rationing control thresh-

olds corresponding to R̂ðqÞ and K̂nðqÞ, respectively.
The following corollary can be derived fromTheorem 1.

COROLLARY 1. For 1 < l ≤ k � 1, if ql�1 = ql = 0, then
the following inequalities hold:

Rðq1; . . .; ql�1; ql þQ; . . .; qk�1Þ�Rðq1; . . .; ql�1

þQ; ql; . . .; qk�1Þ�Rðq;. . .; ql�1; ql; . . .; qk�1Þ; ð13Þ

Knðq1; . . .; ql�1 þQ; ql; . . .; qk�1Þ�Knðq1; . . .; ql�1; ql
þQ; . . .; qk�1Þ�Knðq1; . . .; ql�1; ql; . . .; qk�1Þ: ð14Þ

Corollary 1 provides further insights into the optimal
policy structure. From inequalities (13) we know that

Rðq1; . . .; ql�1; ql þQ; . . .; qk�1Þ�
Rðq1; . . .; ql�1; ql; . . .; qk�1Þ
�Rðq1; . . .; ql�1 þQ; ql. . .; qk�1Þ�
Rðq1; . . .; ql�1; ql; . . .; qk�1Þ� 0:

These inequalities have the following implications.
(1) The more orders are outstanding, the lower the
reorder point is. (2) The effect of having one more
batch that has completed k � l phases on the reorder
point is stronger than the effect of having one more
batch that has completed k � l + 1 phases. That is,
the sensitivity of the reorder point to the number of
outstanding orders in each phase decreases in the
ages of the outstanding orders, where the age of an
outstanding order refers to the number of phases it
has completed. The reordering decision is most sensi-
tive to the youngest outstanding orders that have
completed only one phase.
From inequalities (14), we know that

Knðq1; . . .; ql�1 þQ; ql; . . .; qk�1Þ � Knðq1; q2; . . .; qk�1Þ
�Knðq1; . . .; ql�1; ql þQ; . . .; qk�1Þ
� Knðq1; q2; . . .; qk�1Þ� 0;

which implies that (a) the more orders are outstand-
ing, the lower the rationing levels are (i.e., more

customer orders will be accepted), but (b) the sensi-
tivity of the rationing levels increases in the ages of
the outstanding orders, which is different from the
sensitivity of the reorder point.
The above monotone sensitivity is in line with the

lost sales inventory models without the batch-order-
ing restriction (see, e.g., Huh and Janakiraman 2010,
Zipkin 2008) and the periodic-review inventory-pric-
ing model (Pang et al. 2012). In the continuous-review
setting, Pang and Chen (2010) present some prelimin-
ary analysis for these properties when there are at
most three orders outstanding (i.e., k = 3). However,
it is not easy to further extend their analysis to the
general case where k can be any positive integer. The
state-transformation approach enables us to analyze
the structural properties in the context of the inven-
tory rationing model with multiple outstanding
orders.
The optimal policy parameters can be obtained by

solving the optimality equation (12) using the conven-
tional value iteration approach. Note that such an
approach requires remembering the profit values for
all the states. As the number of the outstanding orders
increases, the state space increases exponentially and
the number of iterations required before the algorithm
converges may also increase significantly, and the
computation effort becomes prohibitive. For more
detailed discussions of the computational complexity
and convergence of the value iteration algorithm, the
reader may refer to Puterman (1994).
The following two examples demonstrate the struc-

ture of the optimal policies in a two-phase and a
three-phase tandemMTS systems, respectively.

EXAMPLE 2 (TWO-PHASE TANDEM MTS SYSTEM). Con-
sider a system with a two-phase Erlang production
process (k = 2). The mean of each phase is 1/k (so
that the mean of the total production time is 1). The
other parameters are c = 0.01, Q = 10, C = 10 +
5Q, h = 1, p = (10, 8, 5), p = (5, 2, 0), and k =
(5, 10, 30). The optimal reorder point and rationing
levels are functions of the total size of the outstand-
ing orders. As shown in Figure 3, both the reorder
point and rationing levels are decreasing functions
of the total size of the outstanding orders and the
rationing levels are nested, which confirms the
results of Corollary 1.

EXAMPLE 3 (THREE-PHASE TANDEM MTS SYSTEM). Con-
sider a system with a three-phase Erlang production
process (k = 3). The mean of each phase is 1/k (so
that the mean of total production time is 1). The
other parameters are the same as those in Example
2. The optimal reorder point and rationing levels are
as follows.
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R ¼

23 13 �1 �1 �1 � � �
13 �1 �1 �1 �1 � � �
�1 �1 �1 �1 �1 � � �
�1 �1 �1 �1 �1 � � �
�1 �1 �1 �1 �1 � � �
..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

K2 ¼

6 4 3 3 3 � � �
2 2 1 1 1 � � �
1 1 1 1 1 � � �
1 1 1 1 1 � � �
1 1 1 1 1 � � �
..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

K3 ¼

35 28 23 20 19 � � �
26 19 16 14 13 � � �
18 15 13 12 11 � � �
14 13 11 11 10 � � �
13 11 10 10 9 � � �
..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

Note that R and Kn are both decreasing in qi,
n = 2, 3, i = 1, 2. In particular, R(0,0) = 23 ≥ R
(10,0) = R(0,10) = 13, …, and K2(0, 0) = 6 ≥ K2(10, 0)
= 2 ≥ K2(0, 10) = 4, … It is clear that the above
policy parameters satisfy inequalities (13) and (14).

EXAMPLE 4 (PERFORMANCE COMPARISON.). It is interest-
ing to know how sensitive the system performance
is to the restriction on the number of outstanding
orders. To this end, we solved a set of numerical

examples to compare the performance of the system
that allows at most one order outstanding with that
of the system that allows multiple orders outstand-
ing at any time. We examined the systems with
two-, three-, and four-phase Erlang production
times, respectively. The average production time is 1
and the mean time per phase is 1/k. For ease of
comparison, we use the long-run average profit as
the performance measure.

The system parameters are still c = 0.01, Q =
10, C = 10 + 5Q, h = 1, p = (10, 8, 5), p = (5, 2, 0),
and k = (5, 10, 30). Let dm be the average profit of
the system with m-phase production times,
m = 2, 3, 4. We varied Q to examine the effect of
batch size. Table 1 reports the results. The first col-
umn is the batch size, columns 2–4 record the aver-

age profits (dO2 ) when there is at most one order

outstanding, the average profit (dM2 ) when there are
multiple orders outstanding, and the percentage
profit increments by allowing multiple outstanding

orders ðD2 ¼ dM2 �dO2
dO2

� 100%Þ, respectively. Similarly,

columns 5–7 and columns 8–10 correspond to the
models with 3 and 4 phases. Table 2 reports the
optimal policies of the models with 2 and 3 phases.
Note that for the tandem systems, we only report
the cases when the systems have at most only
one order outstanding. We have the following obser-
vations.
First, for all k, as the batch size Q increases, the opti-

mal reorder point, rationing levels, and profit differ-
ence tend to decrease. This fits the intuition that the
larger the order size is, the less frequently the replen-
ishment order is placed and more demand orders are
accepted. When Q is small, the reorder point tends to
be greater than Q, R > Q, and the profit difference is
significant, which implies that the single-outstanding-
order assumption may lead to a greater loss. When Q
is large, the reorder point tends to be smaller than Q,
R < Q, and the profit difference becomes close to zero,
which implies that it may suffice to allow at most one
outstanding order.
Second, comparing the single-outstanding-order

system and tandem system, it is interesting to
observe that given the same production status, espe-
cially when the batch size is small, the tandem sys-
tem tends to have lower rationing levels and reorder
points. This may be due to the opportunity to have
multiple outstanding orders before the current order
is delivered and then the tandem system will be more
likely to have higher inventory levels later. The antic-
ipation of having more inventory induces the man-
ager to set lower rationing levels to accept more
orders and lower the reorder point to avoid the
inventory over-stocking risk. However, when the
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batch size is large and thus R < Q, the tandem system
only allows at most one order outstanding and the
rationing levels are effectively the same as those of
the system with at most one order outstanding. This

finding confirms the view that when the batch size is
sufficiently large, the system with at most one out-
standing order provides a good approximation of the
tandem system.

Table 1 Performances: One Outstanding Order vs. Multiple Outstanding Orders

k = 2 k = 3 k = 4

Size One Multiple Percentage increments One Multiple Percentage increments One Multiple Percentage increments
Q dO2 dM2 D2 (%) dO3 dM3 D3 (%) dO4 dM4 D4 (%)

10 8.21 14.37 74.95 9.86 17.77 80.19 10.73 19.62 82.82
11 11.27 14.87 40.74 13.27 19.06 43.63 14.39 20.82 44.69
12 13.77 17.05 23.84 16.04 20.03 24.88 17.38 21.72 24.95
13 15.70 17.96 14.37 18.22 20.80 14.15 19.70 22.45 14.00
14 17.23 18.69 8.51 19.85 21.41 7.82 21.43 23.06 7.58
15 18.41 19.27 4.67 21.06 21.91 4.07 22.70 23.57 3.84
20 21.26 21.25 �0.04 23.76 23.74 �0.06 25.24 25.24 �0.00
25 21.97 21.99 0.07 24.25 24.26 0.05 25.61 25.62 0.03
30 22.03 22.05 0.08 24.10 24.14 0.19 25.34 25.39 0.18
35 21.69 21.71 0.12 23.64 23.69 0.22 24.93 24.89 �0.15
40 21.14 21.18 0.17 23.07 23.10 0.13 24.27 24.21 �0.22

Table 2 Optimal Policies: One Outstanding Order vs. Multiple Outstanding Orders

Size One outstanding order Multiple outstanding orders

k = 2
Q R

K2ð0Þ K2ð1Þ
K3ð0Þ K3ð1Þ

� �
(R0, R1)

K2ð0Þ K2ð1Þ
K3ð0Þ K3ð1Þ

� �

10 31
7 4
46 38

� �
(25, 15)

6 3
40 31

� �

15 24
5 2
36 25

� �
(23, 6)

5 2
35 24

� �

20 21
5 2
33 21

� �
(21, �1)

5 2
33 21

� �

25 20
4 2
33 19

� �
(20, �1)

4 2
33 19

� �

30 19
4 1
32 18

� �
(19, �1)

4 1
32 18

� �

35 18
4 1
33 17

� �
(18, �1)

4 1
33 17

� �

40 18
4 1
33 16

� �
(18, �1)

4 1
33 16

� �

k = 3
Q R

K2ð0Þ K2ð1Þ K2ð2Þ
K3ð0Þ K3ð1Þ K3ð2Þ

� �
(R(0, 0), R(1, 0), R(0,1))

K2ð0; 0Þ K2ð0; 1Þ K2ð1; 0Þ
K3ð0; 0Þ K3ð0; 1Þ K3ð1; 0Þ

� �

10 31
7 5 3
45 37 35

� �
(24, 14, 13)

6 4 2
37 29 27

� �

15 23
6 4 2
33 25 21

� �
(22, 6, 3)

5 3 1
33 24 20

� �

20 21
5 3 1
31 21 16

� �
(21, �1, �1)

5 3 1
31 21 16

� �

25 20
5 3 1
30 20 15

� �
(20, �1, �1)

5 3 1
30 20 15

� �

30 19
5 3 1
30 20 14

� �
(19, �1, �1)

5 3 1
30 20 14

� �

35 19
5 3 1
31 19 13

� �
(19, �1, �1)

5 3 1
30 19 13

� �

40 18
5 3 1
31 19 12

� �
(18, �1, �1)

5 3 1
31 19 12

� �
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5. Concluding Remarks

This study addresses the inventory rationing problem
for a lost sales MTS system with batch ordering and
multiple demand classes. We first consider the case
with general production times and a single outstand-
ing order and then approximate the production time
distribution by the phase-type distributions. To
address the cases with multiple outstanding orders,
we consider a MTS tandem system. We introduce a
transformation approach that enables us to character-
ize the structure of the optimal policy and obtain some
new structural results. These results provide some
new insights into the inventory rationing problems.
Nevertheless, our model is restricted to the

assumptions of Poisson demand and fixed batch size.
In addition, although we are able to characterize the
structure of the optimal policies when there are multi-
ple outstanding orders, it is still unrealistic to com-
pute the optimal policies directly due to the curse of
dimensionality. An important future research direc-
tion is to use some of the insights provided by the
structural analysis to design effective optimal or heu-
ristic algorithms.
More importantly, we have a limited understand-

ing on backlog systems with batch production/order-
ing. Huh and Janakiraman (2010) show that the (R,
nQ) policy is optimal when there is only a single
demand class. In the presence of multiple demand
classes, the questions as to whether the (R,nQ) policy
is still optimal and whether the optimal rationing con-
trol is still of threshold type remain open. We aim to
address these issues in future research.
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